http://www.rgpvonline.com

Roll No

CE-7001 (CBGS)

B.E. VII Semester

Examination, November 2018

Choice Based Grading System (CBGS)

Advance Structural Design -I (RCC)

Time: Three Hours

Maximum Marks: 70

http://www.rgpvonline.com

http://www.rgpvonline.com

- Attempt any five questions. All questions carry equal Note: i) marks.
 - ii) Assume suitable data if required and mention it clearly.
 - iii) Use of IS 456 is permitted.
 - iv) Draw neat and clean diagrams as and when required to support your answer.
- 1. Compute the maximum bending moment for a solid slab bridge for the following data:

Load = Class AA tracked vehicle

Clear span $=6 \, \mathrm{m}$

Clear width or road way = 7.5 m

Average thickness of wearing coat = 80 mm

The width of bearing = 0.4 m

Use M-20 grade of concrete and Fe 415 steel.

- Write short notes on the following: (Any four) $4 \times 3.5 = 14$
 - IRC loadings for road bridges.
 - Losses in prestressed concrete.
 - Braced and unbraced building.
 - Functions and types of shear wall.
 - Merits and demerits of prestressed concrete.
- 3. What do you understand by a substitute frame? How do you select it? Discuss in brief the method of analysis. 14

CE-7001(CBGS)

PTO

http://www.rgpvonline.com

[2]

4. Design of side walls of a bunker to store 300 kN of coal, for the following data: 14

Unit weight of coal $= 8340 \text{ N/m}^3$

Angle of repose $= 30^{\circ}$

The stored coal is to be surcharged at its angle of repose. Take permissible stress in steel as 140 N/mm².

5. Distinguish clearly between a bunker and a silo. Using Airy's theory, show that the height up to which a bin behaves as a shallow one is given by 14

$$h = b \left[\mu + \sqrt{\frac{\mu \left(1 + \mu^2\right)}{\mu + \mu'}} \right]$$

- 6. Design of conical dome of an Intze tank of 800,000 litres capacity. The height of staging is 16 m up to the bottom of tank. The bearing capacity of soil may be assumed to be 150 kN/m². Assume the intensity of wind pressure as 1500 N/m². Use M 20 concrete and HYSD bars.
- 7. a) A circular tank has an internal diameter of 10 m and has maximum height water as 4 m. The walls of the tank are restrained at the base. Determine the values of maximum hoop tension and its location, and the maximum cantilever bending moment by the following methods:
 - i) Reissner's method ii) Carpenter's method
 - b) Explain the method of designing a shear key for a retaining wall. http://www.rgpvonline.com
- 8. Design Toe slab of a counter fort retaining wall to retain 7 m high embankment above ground level. The foundation is to be taken 1 m deep where the safe bearing capacity of soil may be taken as 180 kN/m2. The top of earth retained is horizontal and soil weights $18kN/m^3$ with angle of internal friction $\phi = 30^\circ$. Coefficient of friction between concrete and soil may be taken as 0.5. Use M 20 concrete and Fe 415 steel.

CE-7001(CBGS)

http://www.rgpvonline.com