Total No. of Questions :5]

[Total No. of Printed Pages: 3

Roll No

CS/EI - 303

B.E. III Semester

Examination, June 2015

Digital Circuit and System

Time: Three Hours

Maximum Marks: 70

- Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each question are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.
- 1. a) Convert the number $(210.25)_{10}$ to base 2, 8.
 - b) Convert 10111011 in binary into its equivalent gray code.
 - c) Explain the difference between a weighted and non-weighted code with example.
 - d) Given the logic equation.

$$F = \overline{ABD} + AB\overline{CD} + \overline{ABD} + AB\overline{CD}$$

- i) Make a truth table.
- ii) Simplify using k map.

OR

Simplify the following Boolean function by using Quine Mccluskey method.

$$F(A,B,C,D) = \sum m(0,1,2,3,5,7,8,9,11,14)$$

- 2. a) What is logic gates?
 - b) Draw the circuit diagram for half adder?
 - c) Implement EX-OR gate using NOR gates.
 - d) Explain the working of look ahead carry generator.

OR

Implement a full subtractor using two half subtractors and an OR gate.

- 3. a) What do you understand by logic families?
 - b) What is flip flop? How many flip -flops are required for storing n bit of information?
 - c) Distinguish between PMOS and NMOS logic circuit.
 - d) Explain the operation of monostable multivibrater with the help of waveforms.

OR

Draw schmitt trigger circuit and explain with waveform.

- a) What is shift register? Mention some application of shift register.
 - b) Give broad classification of semiconductor memories.
 - e) Write short note on encoder.
 - d) Implement the function

$$F(A,B,C,D) = \sum (0,1,3,4,7,8,10,13)$$
 Using multiplexer.

OR

Design a MOD - 12 binary counter using J-K flip-flop.

- 5. a) What are the applications of analog to digital converter?
 - b) How can we describe the resolution of a digital to analog converter?
 - e) Explain the transfer characteristics and various performance parameters of DAC.
 - d) Explain voltage to frequency converter with help of block diagram and waveforms.

OR

Explain successive approximation techniques for analog to digital conversion.
