Total No. of Questions: 10] [Total No. of Printed Pages: 4

Roll No.

EC-304

B. E. (Third Semester) EXAMINATION, Dec., 2011

(Grading/Non-Grading System)

(Electronics & Communication Engg. Branch)

ELECTRONIC DEVICES

(EC - 304)

Time: Three Hours

 $\textit{Maximum Marks}: \begin{cases} 100 \ (\textit{Non-Grading}) \\ 70 \ (\textit{Grading}) \end{cases}$

Note: Attempt *five* questions in all selecting *one* question from each Unit. All questions carry equal marks. Assume any suitable data if necessary. Answer-to-the point.

Unit-I

- 1. Discuss in detail carrier concentration in an intrinsic semiconductor clearly stating density of states and density of carriers with schematic diagram under the following points:
 - (a) Number of electrons in conduction band
 - (b) Number of holes in valence band
 - (c) Intrinsic concentration of charge carriers

The Hall experiment is used for a silicon bar known to be p-type. The resistivity of the bar is $220\times10^3~\Omega$ -cm. Width of the bar is 2 mm and distance between the two surfaces of the bar is $2\cdot2$ mm. The magnetic field used an intensity

EC-304

[2]

of $0\cdot 1~\text{Wb/m}^2$. If measured value of current and Hall voltage are $5~\mu$ A and 28 mV respectively, calculate the mobility of holes.

Or

2. Discuss in detail quantitative theory of P-N diode currents. What are the current components in a P-N diode ? By considering equations of diode current, draw V-I characteristics of a diode and explain them. A diode operating at 300°K has V (forward) of 0.4 V across it when the current through it is 10 mA and 0.42 V when the current is twice as large. What values of I_0 and η allow the diode to be modelled by diode equation ?

Unit-II

3. Write notes on (a) Varactor diode (b) Tunnel diode with all necessary equations and diagrams.

Or

- 4. Discusss the following:
 - (a) V-I chracteristics of a Zener diode
 - (b) Breakdown mechanism
 - (c) Zener diode specifications
 - (d) Temperature coefficient

Unit-III

- 5. Explain the following for a Common-Base configuration:
 - (a) Input characteristics
 - (b) Output characteristics
 - (c) Early effect

- (d) Punch-through effect
- (e) Transfer characteristics
- (f) Features of C-B configuration

Or

6. What are the various methods of Transistor Biasing? Explain in brief with suitable circuit diagram.

Determine region of operation and values of I_B and I_C for the circuit shown in figure. For $R_B=150~k~\Omega$. The transistor used has $\beta=100$. Assume $V_{BE~(active)}=0.7~V$, $V_{BE~(sat)}=0.8~V$, $V_{CE~(sat)}=0.2~V$.

Unit-IV

7. Explain the construction, operation of *n*-channel JFET. Draw V-I characteristics and explain it. Define parameters of JFET. Pinch off voltage.

Or

8. Explain *n*-channel depletion type MOSFET with a suitable schematic diagram.

Unit-V

- 9. Briefly explain IGBT under the following:
 - (a) Basic structure and working

P. T. O.

- (b) IGBT characteristics
- (c) Switching characteristics
- (d) Applications of IGBT

Or

- 10. Explain the following:
 - (a) Series and parallel combination of SCR.
 - (b) Turn-on and turn-off mechanism.