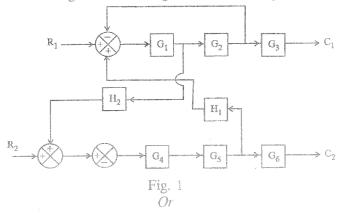
Total No. of Questions: 10] [Total No. of Printed Pages: 4

Roll No.

EC-402(N)

B. E. (Fourth Semester) EXAMINATION, June, 2011

(Electronics & Communication Engg. Branch)


CONTROL SYSTEMS
[EC-402(N)]

Time: Three Hours Maximum Marks: 100 Minimum Pass Marks: 35

Note: Attempt *one* question from each Unit. All questions carry equal marks.

Unit-I

- 1. (a) Derive transfer function of armature-controlled d. c. servomotor using mathematical modeling.
 - (b) Determine C_1/R_1 and C_2/R_1 (assuming $R_2 = 0$) by reducing the block diagram shown in Fig. 1.

2. (a) Derive transfer function of mechanical accelerometer using mathematical modeling.

P. T. O.

10

(b) Find expressions for the outputs C₁ and C₂ from the following signal flow graph as shown in Fig. 2. 10

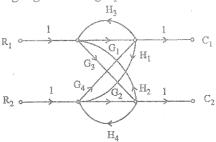



Fig. 2
Unit-II

3. (a) The block diagram of a position control system is shown in Fig. 3. Determine the sensitivity of closed loop transfer function T with respect to G and H, the forward path and feedback path transfer function respectively for $\omega = 1$ rad/sec.

(b) Measurements conducted on a servomechanism show the system response to be:

$$c(t) = 1 + 0.2e^{-60t} - 1.2e^{-10t}$$

when subjected to a unit-step input.

- (i) Obtain the expression for the closed-loop transfer function.
- (ii) Determine the undamped natural frequency and damping ratio of the system.

Or

- 4. (a) Describe in detail the design specifications of 2nd order system and higher order system.
 - (b) Show the effects of feedback on gain, time constant, pole location, bandwidth, sensitivity, stability and steady state error by using suitable example.

Unit-III

5. A feedback control system has an open-loop transfer function:

G (s) H (s) =
$$\frac{k}{s(s+3)(s^2+2s+2)}$$

Find the root locus as k is varied from 0 to ∞ . Also determine value of k to get $\xi = 0.5$ of dominant roots.

20

20

Or

6. Draw the Bode plot for the transfer function:

G (s) =
$$\frac{64 (s + 2)}{s (s + 0.5) (s^2 + 3.2 s + 64)}$$

Also evaluate the gain margin and phase margin.

Unit - IV

7. Consider a unity feedback type-2 system with open-loop gain:

$$G(s) = \frac{k}{s^2}$$

It is desired to compensate the system so as to meet the following transient response specification: 20

Settling time ≤ 4 sec.

Peak overshoot for step input $\leq 20\%$.

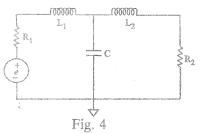
P. T. O.

[4]

Or

8. Consider a type-I system with an open-loop transfer function $G(s) = \frac{k}{s(s+1)(s+4)}$.

This system is to be compensated to meet the following specifications:


- (i) Damping ratio $\xi = 0.5$.
- (ii) Undamped natural frequency $\omega_n = 2$.

9. (a) Obtain the time response of the following systems: 10

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$$

where u(t) is a unit step occurring at t = 0 and $X^{T}(0) = [1 \ 0]$.

(b) Obtain the state-space representation of the following RLC network. 10

Assume the voltage across R_2 and current through R_2 are the output variables y_1 and y_2 respectively.

10. Examine the observability of the system given below: 20

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \mathbf{u}$$

EC-402(N)

18,050