[2]

Total No. of Questions:5]

[Total No. of Printed Pages :4

Roll No

EC 402 **BE IV Semester**

Examination, June 2013

Electro-Magnetic Theory

Time: Three Hours

Maximum Marks: 70/100

- Note: 1. Attempt any two questions in each unit.
 - 2. Each questions having equal marks.

Unit - I

- 1. a) A particular scalar field α is given by
 - i) $\alpha = 20e^{-x} \sin\left(\frac{\Pi Y}{6}\right)$
 - ii) $\alpha = \frac{40\cos\theta}{\lambda}$

Find its gradient at P (0,1,1) for Cartesians and P (3, 60°, 30°) for spherical system.

- b) Eight point charges of Inc each are located at the corners of a cube in free space that is 1m on a side. Find \overline{E} at the center of
 - i) The cube

- ji) A face and
- iii) An edge
- Prove that the divergence of the electric field and that of electric flux density in a charge free region is zero.

Unit - II

- Prove Laplace's and Poisson's equation and show that 2. a) they have Unique solutions.
 - b) Given the potential field $V = \left(\frac{50 \sin \theta}{r^2}\right)^{V}$ in free space:
 - Determine whether V satisfies Laplace's equation
 - ii) Find the total charge stored inside the spherical shell
 - consider a short copper wire of length '2L' and crosssection area a situated in the air coincident with z-axis at the origin. The current density J in positive z-direction. J is uniform through out the wire and constant with respect to time. Find the magnetic flux B every where at a large distance from wire using the concept of vector potential.

Unit - III

- 3. a) Given that $\overrightarrow{H}_1 = -2\overrightarrow{a}_x + 6\overrightarrow{a}_y + 4\overrightarrow{a}_z$ in region $y x 2 \le 0$ where $M_1 = 5 M_0$. Calculate $\overline{H_2}$ and $\overline{B_2}$ in the region $y-x-2\ge 0$ where M, = 2 M
 - b) A certain material has $\sigma = 0$ and $H_R = 1$. If $\vec{E} = 800 \sin(10^6 + -0.01z) \vec{a}, \frac{v}{m}$ move use of Maxwell's equations to find. $E_R \times \text{find } \overrightarrow{H}(z,t)$

rgpvonline.com

- Write short notes on:
 - i) Skin depth
 - ii) Phase velocity
 - iii) Intrinsic impedance

Unit - IV

In homogenous regions where $M_r = 1$ and $E_r = 50$, the fields are given as

$$\vec{E} = 20\pi e^{i(\omega x - \beta z)} \vec{a}_x v /_m$$
 and

 $\overline{B} = M_o H_o e^{i(\omega - \beta z)} \overline{a_i}$ T. find ω and M_o if the wavelength is 1.75 meter.

- Derive an expression for energy associated with plane electromagnetic wave and define poynting vector. Use it to find time average power density due to uniform plane in perfect dielectric.
- An FM wave travelling in a dielectric medium having dielectric constant 9 is incident at an angle on the dielectric-air interface. Determine
 - i) Critical angle
 - ii) If the angle of incidence is 15°

Calculate the reflection coefficient for the perpendicular polarization.

Unit - V

- Derive expression for transmitted and reflected field, when a plane electromagnetic wave is incident on the surface of a perfect dielectric.
 - Light is incident from air to glass at Brewster's angle. Determine the incident and transmitted angles. PTO

[4]

c) A generator of 1 volt, 1000 Hz supplier power to 1000 Km long open wire terminated in z_o (characteristics impedance) and having following parameters:

$$R = 10.4 \Omega$$

$$C = 0.00835Mf.$$

Calculate the phase velocity characteristic Impedance and propagation constant.