http://www.rgpvonline.com

Total No. of Questions: 51

[Total No. of Printed Pages: 2

EC-604

B.E. VI Semester

Examination, December 2016

Antenna And Wave Propagation

Time: Three Hours

Maximum Marks: 70

- Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each questions are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.
 - v) Assume suitable data if any missing. Answer must be to the point.
- What is Radiation field?
 - What do you mean by Hertzian dipole?
 - Define radiation intensity and directivity.
 - d) Derive an expression for the power radiated by a current element.

Find the current required to radiate power of 50W at 60MHz from a 0.1λ.

- What is Broad Side Array? 2. a)
 - b) What is End Fire Array?
 - Give the statement of reciprocity theorem.
 - Design a three element binomial array of isotropic elements positioned along the z-axis a distance 'd' apart, find the:
 - i) Normalized excitation coefficient
 - ii) Array factor

EC-604

PTO

http://www.rgpvonline.com

OR

Explain the principle of pattern multiplication. Give suitable diagram and examples.

What is Horn antenna?

http://www.rgpvonline.com

http://www.rgpvonline.com

EC-604

- Write the applications of microstrip antenna.
- What is Turnstile Antenna?
- Explain the working of a Parabolic reflector antenna.

OR

Explain in detail log periodic antenna and what are their advantages.

- What is continuous and discrete linear source?
 - What is Element factor? b)
 - What is Invisible region?
 - A three element array is placed along the z-axis. Assuming

the spacing between the elements is $d = \frac{\lambda}{4}$ and the relative

amplitude excitation is equal to $a_1 = 1$, $a_2 = 2$ and $a_3 = 1$, find the angles where the array factor vanishes when

$$\beta = 0, \frac{\pi}{2}, \pi$$
 and $\frac{3\pi}{2}$ use Schelkunoff's method.

Given a continuous line source, whose total length is 4\(\lambda\), design a Taylor, one parameter, distribution array whose sidelobe is 30dB down from the maximum of the major lobe.

http://www.rgpvonline.com

- What is Virtual Height?
 - What is Skip Distance?
 - Discuss "Maximum usable frequency". c)
 - Explain duct propagation. Discuss its merits and demerits.

Describe tropospheric propagation. List its applications.
