No. of Questions:5]

EX - 402

B.E. IV Semester

Examination, June 2015

Electrical and Electronics Materials

Time: Three Hours

Maximum Marks: 70

- te: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each questions are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.
- a) Explain the essential properties of low resistivity materials.
 - b) What is super conductivity? Explain Silsbee effect.
 - c) A coil of copper wire has a resistance of 50 ohms at 20°C. Calculate its resistance at 60°C. Given that temperature. Co-efficient of 0°C is 0.00427 per °C.
 - d) What are the factors those affect the resistance of the conducting materials. Describe in detail with temperature co-efficient equation.

OR

The critical field for Niobium is 1×10^5 Amp./m. at 8-K and 2×10^5 Amp./m. at O K. Calculate the critical temperature of the material.

www.rgpvonline.com

- 2. a) What is the difference between the insulator and dielectric?
 - b) A condenser is connected for 0.25 sec. across a 220 V supply, the current being kept steady at 0.22 A. Calculate its charge and capacitance.
 - c) What is Piezoelectricity? Explain the effects of piezoelectricity.
 - d) How testing of dielectric strength of transformer oil is done. Describe main features of insulating liquids.

OR

Explain the term dielectric loss and loss angle with the help of a phasor diagram. How frequency and temperature affect the loss tangent of dielectric.

- 3. a) What do you mean by intrinsic and extrinsic semiconductor materials?
 - b) What are the applications of semi conducting materials?
 - c) Explain the following terms regarding semiconductors:
 - i) N type and P type impurities
 - ii) Generation and recombination
 - iii) Doping
 - d) Explain the Hall effect and derive the expression for Hall voltage and Hall angle.

OR

The resistivity of a semiconductor was known to be 0.00893 Ohm-m at room temperature. The flux B_z in the Hall model was 0.5 Weber/m². Calculate the Hall angle for a Hall coefficient of 3.66×10^{-4} m³/C.

- 4. a) What is hysteresis loop and what information does it give about a magnetic material. Explain with neat sketches.
 - b) What are the basic requirements of optical communication? How light can be transmitted in optical fiber cables.
 - c) What do you understand by magnetostriotion; also explain the factors affecting permeability and hysteresis loss?
 - d) An iron ring of circular cross-section 10 cm² has a mean circumference of 1 m. The relative permeability of the ring material is 1000. If the ring is uniformly wound with 1000 turns. Determine the current required to produce a flux of 0.01 wh.

OR

Explain the term diamagnetic, paramagnetic and ferromagnetic, with reference to magnetic dipoles of atoms.

- 5. a) What are the advantages of integrated circuits over discrete circuits?
 - b) Explain BJT with basic structure and symbol.
 - c) Explain the following:
 - i) IC resistors
 - ii) IC capacitors
 - d) Explain the steps involved in the fabrication of ICs.

OR

Define and explain the FET parameters and Establish the relation between them.
