Roll No

EX-603

B.E. VI Semester

Examination, June 2013

Switchgear and Protection

Time: Three Hours

Maximum Marks: 100 Minimum Pass Marks: 35

Note: Attempt any five questions. Assume suitable value for missing data, if any.

- 1. a) Explain the terms: Restriking voltage, recovery voltage and RRRV. Derive the expression for restriking voltage and RRRV.
 - b) What is the arc interruption methods. Discuss the recovery rate theory and energy balance theory of arc interruption.
- a) For a 132kV system, the reactance and capacitance up to the location of the circuit breaker is 3 ohms and 0.015 μF respectively. Calculate the following:
 - i) The frequency of transient oscillations.
 - ii) The max. Value of restriking voltage
 - iii) The max. Value of RRRV.
 - b) Explain the HRC cartridge fuse in detail. What are its advantages and disadvantages?
- 3. a) Describe the Vacuum circuit breaker in detail with neat sketches.
 - b) Explain the construction and working of SF₆ Circuit breaker. What are the physical, chemical and dielectric properties of SF₆ gas.

rgpvonline.com

- 4. a) Describe different types of Induction relays. Derive the torque equation and show how different time and current settings can be obtained from it.
 - b) What are the essential qualities of protection in a protective system? Discuss various zones of protection.
- 5. a) Describe the operating principal and constructional features of a directional relay. Draw 30° and 90° connection of directional relay.
 - b) The current setting of a relay is 5 Amp, PSM = 1.5, TMS = 0.2, C T. ratio = 400/5, Fault current = 6000 Amp. Determine the operating time of relay.

At TMS = 1, operating time at various PSM are:

	The state of the s						
PSM	2	4	5	8	10	20	
Op.Time(sec.)	10	5	4	3	2.8	2.4	

- 6. a) Describe with neat sketches, the percentage differential protection scheme of the 3-phase alternator.
 - b) Discuss the operating principle of impedance relay with its characteristics.
- 7. a) Explain these relays in detail.
 - i) MHO relay
- ii) Buchholz relay
- b) The neutral point of a three phase 20 MVA, 11kV alternator is earthed through a resistance of 5 ohms. The relay is set to operate when there is out of balance current of 1.5 Amp.

The CTs have a ratio of 1000/5. Calculate what percentage of winding is protected against an earth fault.

- 8. Write short notes on the following: (any four):
 - i) Insulation coordination.
 - ii) Basic impulse insulation level.
 - iii) Surge absorber.
 - iv) Time graded system and current graded system.
 - v) Current limiting reactors.
 - vi) Static relays.

rgpvonline.com

EX-603 *****