Unit-1 Elasto-dynamics

Unit-1

Elasto-dynamics

Syllabus:

Simple Harmonic Motion, Electric Flux, displacement vector, Columb law,
Gradient, Divergence, Curl, Gauss Theorem, Stokes theorem, Gauss law in
dielectrics, Maxwell’s equation: Integral & Differential form in free space,

1sotropic dielectric medium.
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Unit-1 Elasto-dynamics

Periodic motion:

If an object repeats its motion on a definite path after a regular time interval then such type of motion is
called periodic motion.

1) Vibratory motion or oscillatory motion

2) Uniform circular motion

3) Simple harmonic motion

Vibratory motion:
If a body in periodic motion moves to and fro about a definite point on a single path, the motion of the body

is said to be vibratory or oscillatory motion.

Mean or equilibrium position:

The point on either side of which the body vibrates is called the mean position or equilibrium position of the

motion.

Time period:

The definite time after which the object repeats its motion, is called time period and it is denoted by T

Frequency:

The number of complete oscillation in one second is called the frequency of that body, it is represented by

the letter f orn or ¥ its unit is Hz.

Uniform circular motion:

Figure(1): Uniform circular motion

2m

Let an object is moving on a circular path of radius r with uniform angular velocity w =

- _________________________________________________________________________________________]
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Unit-1 Elasto-dynamics

In right angle triangle AOMP

4POM = wt + ¢
oM
— = cos(wt +
o5 ( ?)
X
- = cos(wt + ¢)
x = 7r. cos(wt + ¢)
Butw ==
T
21
so x = T cos?é + (;b)
Similarly
MP
— = sin(wt +
5 ( ?)
% = sin(wt + ¢)
y = r. sinflwt + ¢)
. 2T
y = T sm?é + qb)

Both equation (1) and (2) represents the uniform circular motion.

Simple Harmonic Motion (SHM):

When a body moves periodically on a straight line on either side of a point, the motion is called the simple

harmonic motion.

Page 3

http://www.rgpvonline.com http://www.a2zsubjects.com



Graphical representation of SHM
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Figure(2): Graphical representation of SHM

Displacement in SHM:

Let a particle is moving on a circular path with uniform angular velocity "w" and the radius of the circular

N and M is the SHM about the mean position O

path is "r"; then movement of the point on their axis i.e.
Y
ey
Sy
i (@)
Y’

P

Figure(3): SHM

Let attimet
In AOPN

= th@ particle is on point A and after time t the position of the particle is P then

= sin(wt)

http://www.rgpvonline.com
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Unit-1 Elasto-dynamics

Y = 1. SIN(WE i (1)
. 2T
y = 1. sin— O
This equation represents the displacement of foot dropped from the position of particleonY — axis

Velocity in SHM:

Differentiating equation (1) with respect to t we get-

d .
d_Jt] = %(r. sin )wt
d
d_)t] = rwcos wt e (2)
d
d_3t] = rovl — %Lt
d
d_3t] = wVr?— 3sin?wt
d
d_3t] = w.rz— 3% Using (1)
(i) In equilibrium conditiony = 0
So d
d_}t] = wyr:2—- 9
d
o rw
dt
(ii) In the position of maximum displacementi.e.y = r
So d
d_}t/ = wVr2- 7%
dy 0
dt
Acceleration:
Again differentiating equation (2) we get-
d’y v
az o
2
ZTJZ] = %(rwcos at
2
Z_)zl = —rw? sin wt
t
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Unit-1 Elasto-dynamics

dzy _ 2

oz WY e (3)
d?y
—Z = 0
dt? t by

This is a second order differential equation which denotes the equation of SHM in the differential form
Again by equation (3)

d?y 5
R = —wW
dt? Y

Multiplying by m i.e. the mass of the particle executing SHM then

dzy 2
m—= = -mw’y
dt?
F = —-mo?y

Here negative sing shows that the direction of displacement and acceleration are opposite to one another

So F « -y
= constani

Time period and frequency:

a = wYy
> \/Z
w = |-
y
LI
T Ay
L
T — 2m Aly
N
vV = y
And T = Zn\/g
a
Question: A uniform circular motion is given by the equationx = 10 sin(20t ,4ind0.5)
1) Amplitude
2) Angular frequency
3) Time period
4) Phase
Sol: Given:x = 10(26im + ).5

Comparing the given equation with the standard equation of uniform circular motioni.e. x =

A sin(wt + ¢)
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Unit-1 Elasto-dynamics

v ==2- 0318s
2 2
T Z=22_ 03145
T 20
Question: A particle is moving with SHM in a straight line. When the displacement of the particle from
equilibrium position has values x; and x,, the corresponding position has valocities v; and v,
show that the time period of oscillation is given by
T
Sol: In the SHM the velocity is given by-
v WVT2 — & e (1)
At x4 velocity is v;
So
vy w [r2— %
Squaring both sides
Vi W (% = B e, (2)
Again at x, the velocity is v,
So
v3 W2(r? = 2 e (3)
By equation (2) and (3)
vi— ¥ = 0’0 - B - R
vi— ¥ = o*(-
(U% - 22‘/) w2
(xf— ¥
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Unit-1 Elasto-dynamics

2

wi- ¥
(- ¥

vi- P
- ®

X;— &
vi— ¥

21

If the earth were a homogeneous sphere and a straight hole was bored in it through

the centre, then a body dropped in the hole, execute SHM. Calculate the time period

W
W
Now w 2
T
So
T
Question:
of its vibration. Radius of the earth is 6.4 X ®#fand g
Solution:

diameter of earth

Energy of a particle executing SHM:

6.4 x ©10
9.8

9.871s

The time period of oscillation executed by the body dropped in the hole along the

5077.5s

A particle executing SHM possess potential energy (U) on the account of its position and kinetic energy

(KE) on account of motion.

Potential energy:

We know that the acceleration in a simple harmonic motion is directly proportional

and its direction is towards the mean position

to the displacement

Let m is the mass of particle executing SHM then the force acting on the particle will be-

F

F

m. a

—mw?y

If the particle undergoes an infinitesimal displacement against the restoring force, then the small amount of

work done against the restoring force is given by

aw

(=F). dy

Here negative sign shows that the restoring force is acting the displacement than

http://www.rgpvonline.com
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Unit-1 Elasto-dynamics

dW = mw?ydy
So the total amount of work done
W = mw? f y dy
1
w = Emwzyz

This work done is equal to the potential energy U of the particle at displacement y

1
i.e. U = Em(uzyz

Kinetic energy:

If v is the velocity of the particle executing SHM, when the displacement is y then kinetic energy KE

KE = Lo
= va
ButforSHMv =.@?— 3)
Where 7 is the amplitude of SHM
So 1 2
KE = Sm (§r2= 3)
= KE = %mwz(rz— Y I (2)
Total energy:
Now the total energy
E = U + KE
1
= E = Emw2y2+zmw2(r2— »
1 1 1
= E = Emw2y2+zmw2r2—§mw2y2
1
N E = Emwzr2

Thus we find that the total energy:
1) F x m
2) E « ofiSHM
3) E ?afSHM

Graphical representation of total energy of SHM
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Unit-1 Elasto-dynamics

Total Energy (U+KE
e e

y=-r Displacement ——>

y=r

Figure(4): Total energy of SHM

Position vector:

A position vector expresses the position of a point P in space in terms of a displacement from an arbitrary
reference point O (typically the origin of a coordinate system). Namely, it indicates both the distance and
direction of an imaginary motion along a straight line from the reference position to the actual position of

the point.

Displacement Vector:

A displacement is the shortest distance from the
initial to the final position of a point P. Thus, it is
the length of an imaginary straight path, typically
distinct from the path actually travelled by
particle or object. A displacement vector
represents the length and direction of this <

imaginary straight path. Figure(5): Displacement vector

Area Vector:
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Unit-1 Elasto-dynamics
———— —————— ]

In many problems the area is treated as a vector,

_ >
an area element ds is represented by ds, such ds=ds 0
that the area representing the area vector ds is 2

perpendicular to the area element. The length of

the vector ds represents the magnitude of the / & — Areca=ds

area element ds

Figure(6): Area vector

Coulomb’s Law:

According to it the force of attraction or repulsion

between the two point charges is directly - r "
A p
proportional to the product of the magnitude of the ) ( \'j.
"\ // \\7” ////
charges and inversely proportional to the square of \q/ q
1 2

the distance between them.
If two charges q; and q; are separated at a distance  figyre(7): Two electric charges separated a distance r
r form one another then the force between these

charges will be-

i) Force is proportional to the product of the magnitude of the chargesi.e. f ;. qgq
ii) The force is inversely proportional to the distance between the chargesi.e. f oréz
So
fooi

qi; A4

fo=—ta
Where K is a proportionality called electrostatic force constant, its value depends on the nature of the

medium in which the two charges are located and also the system of units adopted to measure q;, gand .

So
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Unit-1 Elasto-dynamics

Case 1:(when the medium between the charges is air or vacuum )

As we know that the force between the charges is given as-
o=t
r
fweputqgu = g= 1@ndr = Tlihen
f = k
So K is the force feels by two charges of 1 C placed 1 m apart from one another in vacuum or free space.

ItsvalueisK = 9 %nmewbon X metex coulomb

Case 2:(When the medium between the charges is other than the vacuum)

If the changes are located in any other medium then

1 1 1
=— —= 9 X.10
Amey & &

Where &, is the dielectric constant of relative permittivity.

Putting this value in equation (1) we get

Amege, 12

1 .
P qi1- A

Where F' is the force in the medium

1 .
F,__CI1 A

4me’ 12

Where ¢ =, gg is called the relative permittivity of the medium.

Vector form of the Coulomb’s Law
Consider two like charges g, and g, present at A and B in vacuum at a distance r apart. The two charges

will exert equal repulsive force on each other,

Let ﬁ1z be the force on charge g; due to the charge g, and ﬁ'21 be the force on charge g, due to charge q,.

According to the Coulombs’ law, the magnitude of force on charge gq; and g, is given by

q1-9>
Amey 12

|ﬁ12|- |ﬁ21| =

Let 74, and 7,4 are the unit vectors in the direction from g, to g, and vice versa.

So the force ﬁlz is along the direction of unit vector 7,1, we have
1 49 4,

Fi,=—. —2%
12 = . 21
4mey 12
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Unit-1 Elasto-dynamics

And

Zqz\

5 712

. 1 4.
Fy =

ey T

These two equations show the Coulombs’ law in vector form.

Electric flux:

Number of electric lines of forces passing normally through the surface, when held in the electric field. It is
denoted by ¢ . There are two types of electric flux-
1. Positive electric flux: When electric lines of forces leave any body through its surface it is considered
as positive electric flux.
2. Negative electric flux: When lines of forces enter through any surface, it is considered as the

negative electric flux.

Measurement: Let us consider a small area ds of a

closed surface S. The electric field (E) produced \\ ;\\ //‘

due to the charge g will be radially outwards

S,
which will be along 7. Now the normal to the / %

surface area ds is ds as shown in the figure,

hence the angle between ds andfiis @

So the electric lines of forces from the surface

area will be given as- Figure(8): Electric flux
dp = E. ds
dp = (E cos 6)ds.....(1)

Where E  cos isthe component of electric field E along ds.

Hence the electric flux through a small elementary surface area is equal to the product of the small area and

normal component of E along the direction of the elementary area ds.

Over the hole surface,

¢ = $E dscos 6

Pr = FE. ds i (2)
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Unit-1 Elasto-dynamics

Gradient of a scalar field:

The gradient of a scalar function ¢ is a vector whose magnitude
is equal to maximum rate of chcnge of scalar function ¢ with
respect to the space variable (V) and has direction along that

change.

In the scalar field let there be two level surfaces S; and S, close

together characterised by the scalar function ¢ and ¢ + ¢

respectively. Consider point P and R on the level surfaces S; and
S, respectively. Let 7 and 7 ¥ dethe position vector of P and
R.ThenPR =dr = idx + jddz + k Figure(9): Gradient of a scalar field
Now as ¢ is a function of (x, y, i&.

¢ = ok vy 2)

Then the total differentiation of this function ca

dp = -Iai)dz
0z

dp = . (idx + Jdy) + k

dp = (V(p)ﬂ ............................................................ (1)
Agian if dn represents the distance along the normal from point P to the surface S, to point Q, then

PQ = dn
Inthe APQR

Z—Z = cos 0O

dn = drcos 6

Now if we consider a unit vector along dn as i
then
L T OO (2)

If we proceed form P to Q then value of scalar function ¢ increases by an amount d¢

_ 9¢
d¢ = %dn
dp = 22@dr. A)  [USING (2] (3)
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Unit-1 Elasto-dynamics

By equation (1) and (2)

. — o 72 A
V. = o (dr. n)
V. » = Pl
a¢ A
d = —
grad ¢ ann
Note: V= @; + 3&;—/ + A%) is called del or Nabla operator.
Note: grad ¢ = V (p
i¢p = (12 + 4 + a)
grad¢dp = l Ep 3; 5—
¢ 9¢  ~0¢
roas = (% Y
Note: The gradient of a scalar field has great significant in physics. The negative gradient of

electric potential of electric field at a point represents the electric field at that point. i.e.
E= —gradV

Note: The gradient of a scalar field is a vector quantity.
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Unit-1 Elasto-dynamics

Divergence of a vector field:

The divergence of a vector field A at a

certain point P(x, y, i) defined as the

outward flux of the vector field A per unit

volume enclosed through an infinitesimal Y A
closed surface surrounding the point "P".
H G
R
s — ] S - ” Az
5 I&Au ds LE °A =
divA= lim—— E
-0 T Ay
8 ! AX Q
divA= lim— O >
™0 T
1 X
T . k . WL L
Consider a infinitesimal rectangular box with 7 )

sides Ax, Ay, &m one corner at the point
P(x, y, Zn the region of any vector
function A  with rectangular  faces
perpendicular to co-ordinates axis.

Figure(10): divergence of a vector field

The flux emerging outwards from _
ff Ay, ds
QFGR

surface QFGRi. e. surfaced,,
Sy, = ff (iAo + JA + &y,). (by, Az)
QFGR

Where A; s the average of the vector function over thesurface QFGR i.e. surface 2

Spay = ff T (1)
QFGR
Similarly
The flux emerging out from the _
= ff Alx- ds
surface PEHS i.e. surface 1, Jg PEHS

Spiy = ﬂ (tAc+ J4+ &) (—idy, Az)
PEHS

Spiy = ffp T B (2)

Thus net outwards flux of vector A through the two faces perpendicularto X  axis,
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Unit-1 Elasto-dynamics

5

8¢

But (A2x — A)
(A2x — A)

Sox + Oth

| e = 2. 82 3)

A(x + Ax) 3y, Ax, y, z)

04,

A
8xx

Where % is the variation of A, with distance along X axis by equation (2) and (3)

Thus net outward flux of vector function A through the two faces perpendicularto X axis

Sy

Similarly perpendicularto Y axis

8¢,

Similarly perpendicularto Z  axis

8¢,

% Axldy, Az [ Using equation (3)

04,
— AxAyAz

aAZAAA
aZ XAQYAQAzZ

Therefore whole outward flux through infinitesimal box

6¢
8¢

0P, + Ot 6%
d0A, 04, 0A
42+

dx dy 0

z
AxAyA
Z>xyz

Now divA at any point, which is the flux enclosed per unit infinitesimal volume surrounding that point is

given by-
div A
div A
div A
div A
div A
Note:

Note: |fdivA= +ve

6¢

AxAl;/rAnz—w AxAyAz

(an
0x

04y  0A
y z
dy + 9z
AxAyAz

) AxAyAz

lim
AxAyAz—0
an+6Ay+6AZ

Ox dy 0z
(Aa+ 4 +Aa>(AA + JA+ &)
St 3y 5; A+ JA 2

V. A

Divergence of a vector field is a scalar quantity.

http://www.rgpvonline.com
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Unit-1 Elasto-dynamics

it indicates the existence of the source of fluid at that point.

Note: |fdivAd= —ve
It means fluid is flowing towards the point and thus there exist a sink for the fluid.

Note: IfdivA= 0
It means the fluid is flowing continuously from that point. In other words this means that the flux of
the vector function entering and leaving this region is equal. This condition is called solenoidal

vector.

- _________________________________________________________________________________________]
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Unit-1 Elasto-dynamics

Curl of a vector field:

If 4 is any vector field at any point P and 6s an Y A

infinitesimal test area at point P then curl

. C$A. dr. ]
curlA= lim——17 A7
8s-0 OS AX )

Let us consider an infinitesimal rectangular area o

= 4

EFGH with sides Ax and Ay paralleltoX — Y !
plane in the region of vector function A 7
Let the coordinate of E be (x, y, .H)

Ay, 4 Aarethe Cartesian components of Figure(11): Curl of a vector field

A at P then
A= (iA+ jA+ &)
Now the line integral of vector field _ f > i dr
along the path EF (Ty,) EF
= (A + 41y + &) (A%
= 14—19( Ax

Where A4, is the average value of X eomponent of the vector function over the path EF
Similarly for the Path GH
Ty, = f "A dr
EF
= (A + 4oy + &) (—iAx)
= —/TZx Ax
Where A4,, is the average value of X eomponent of vector function over the path GH.
Hence the contribution to line integral 952.53 form two path (EF and GH) parallel to X  axis is
Ty = Tix—Ty
= —(Azx —Ap)Ax
As the rectangle is infinitesimal the difference between the average of A, (i. 6712x - le) along these two
paths may be approximated to the difference between the values of A, at E and H
Thus-
Ay —A1x = Amx— A
Apx —A1x = Ax(x, y + Wy, Ax, y) z
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Unit-1 Elasto-dynamics

_ _ dA,
Apy — A1y = dy Ay
Hence the contribution to the line integral gjiEFGHA._fifrom the path EF and GH
dA,
T, = 3y AYAX e (2)
Similarly by the path FG and HE
dA
Ty = a—xyAxAy ................................................... (3)

Therefore the line integral along the whole rectangular EFGH form (2) and (3) is given by-

T = f G+ ). dr

EFGH
T = f _).A—()iT'
EFGH
04, 04,
6T = <W_ ay)AyAX .................................... (4)
Now (curlA), =
(curlA), =
(curlA), = (5)
Similarly
= d0A 0A
curl A ( x_ Z) ........................................... 6
( )y F PR (6)
04, 04,
and (curl b)), = <6y p ) ........................................... (7)
Summing up the results given in (5), (6) and (7) we get
curl A = i(curl A), + (turlA)y+AchrlA)Z
= T ) S
curlA = 1 y - x Oy
[t j k]
i - d ad 0
U8 = 19x 9y oz
A, A, A,
curlA = Vx A

Note: The curl of a vector field is sometime called circulation or rotation or simply rot.
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Unit-1 Elasto-dynamics

Note: Ifcurl A= €hen vector field 4 is called Lamellar field.
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Unit-1 Elasto-dynamics

Gauss’ Divergence Theorem:

According to this theorem the volume integral of

N
divergence of a vector field A over a volume V is

equal to the surface integral of that vector field S // // / / A

A taken over the surface S which enclosed that % M / M /

volume V. i.e.

(1
[ - A

S

Consider a volume V enclosed by a surface S this \( / / / / / /
volume can be divided into small elements of

volumes V;, V.. .., vwhich are enclosed by the

elementary surface S1) S e aep

Figure(12): Gauss’ Divergence thorem
respectively. By definition the flux of a vector

field A diverging out of the i*" element is

R A. 7 d
(ivi) = IsA- da
1 Vl
(divd),. v = H A da e (1)
Si
On LHS of equation we add the quantity (div A )l,. Wfor each element Vy, V.. ., V
N -
S(awi), w= || @i
i=1 v
On RHS of equation (1) if we add the quantity ffs A . dfor each S1) See e .o We g8t the terms only on

the outer surface S

Sum comes out to be

N N
;Siff. Ala = _g A da

So putting these values in equation (1) we get

So fff(div/f)dv _ ﬂ "A da

This is the Gauss’ divergence theorem.
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Unit-1 Elasto-dynamics

Stokes theorem:

According to this theorem, the line integral of a vector field A along the boundary of a closed curve C is

equal to the surface integral of curl of that vector field when the surface integration is done over a surface S

f*A_’ dE ff culr Ala

enclosed by the boundary C i.e.

c S
(&>
1
_> «\ = B
dl =
=7
«— <« q D D)
p — — D

@
!

Figure(13): Stokes theorem
Consider a vector A which is a function of position. We are to find the line integral
gﬁcff. _)ddlong the boundary of a closed curve C. If we divide the area enclosed by the curve C in two parts by
a line pgq, we get two closed curve C; and C,. The line integral of vector A along the boundary of C will be

equal to the sum of integral of A along CypqCy and C,qpCy

§*_’d _ f*fd; 3@.7&1

[4 C1 C2
Similarly if we divide the area enclosed by the curve C in small element of area da, da, ... .. .by the
curve C;, L... .. ..As.shown in the figure. Then the sum of line integrals along the boundary of these
curves C;, L.. .. (taken anticlockwise) will be

jévrd _ Z fﬁm
c Cn

By the definition of curl, we have
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Unit-1 Elasto-dynamics

L $ ATl
curlA = LS
dg,
curl /T -),{gl _ f _).A—)dl

——
N
S
g
I
M *

curl A dg= f f culr dla
S

jg_)A_)d — ﬂ- culr A da
S

Gauss Law

According to this law, the net electric flux through any closed surface is gi times of the total charge
0

present inside it.

But by the definition of electric flux

(2)

So by equation (1) and (2)

- — Q

Ed _— —

>0 ff T &
S

This is the integral form of Gauss’ law.

Proof:

Casel:

When the charge lies inside the arbitrary
closed surface.

Let charge Q lies inside the arbitrary surface at

point O
Now let us consider an infinitesimal area ds Figure(14): Gauss Law
on this surface which contain the point P, the
direction of the area vector ds s

perpendicular to the surface and electric field
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Unit-1 Elasto-dynamics

E makes an angle 8 with ds then electric field

will be given as-

Now the flux emerging out of the surface area ds will be

=

Where 6 is the angle between Fandds

So putting the value of E we get

ds cos 0
But ——— =
r

Now total flux

=

Case 2:

da.e. solid angle

d¢
d¢

de
de

d¢

- —

E. ds
Eds cos 6

4

Q

4me,

|
d
4reg @

Q

47T€0

Q

&o

When the charge lies outside the closed surface then the flux entering and leaving the surface

http://www.rgpvonline.com
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Unit-1 Elasto-dynamics

area will be equal and oppositethen¢ = 0

Gauss law in the differential form (Poisson’s equation and Laplace’s equation)

If the charge is continuous distributed over the volume and charge density is p

then Q = fff pdV
14

Now by Gauss theorem the flux emerging out of this surface which enclosed volume VV

j:]_ —)E_()i:: éjjj pdV e (1)
s 14
.I:f %E_()i:: .I:f dl'l_;EJlV (2)
s 14

By equation (1) and (2)

N fvff divRV _ %fvff pdv
- jﬂ (diﬁl}gp—o) v —

But as we know thatdV/ # 0

By Gauss divergence theorem

So div}E_?)—ﬂ = 0
€o
. p
= divE = — T )
€o

This is the differential form of Gauss’ law and also known as Poisson’s equation

Now if we consider the charge less volumethenp = 0

So divE = 0 e a (8)
This equation is Laplace equation.

Again by equation (3)
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B
divE = £
We know that E = —gardV
So P

div (—gradV) = ¢,

= SN P
-V. W) = £
= vZ V — _ﬁ
€o
= 62V+62V+62V _ _ P
ax2 ' 9y? ' 9z2 %o

Gauss law (in Presence of dielectrics):

The Gauss’ law relates the electric flux and charge. The theorem states that the net electric flux across an

. . . 1,
arbitrary closed surface drown in an electric field is equal to — times the total charge enclosed by the

o

surface. Now we want to extend this theorem for a region containing free charge embedded in dielectric.
In figure the dotted surface S in an imaginary closed surface drown in a dielectric medium. There is certain
amount of free charge @ in the volume bounded by surface. Let us assume that free charge exists on the
surface of three conductors in amount q;, g ... In a dielectric there also exits certain amount of
polarisation (bound) charge Q,,.

Hence by Gauss’ theorem

[f TEde = %(Q'*' ) (1)

Where @ =, 4 g+ 4isthe total free charge and @, is the polarisation (bound) charge by

Q = ff P. de fff(‘divp)d" ................... (2)
14

S1+S,+S3
Here V is the volume of the dielectric enclosed by S. As there is no boundary of the dielectric at S,
therefore the surface integral in equation (2) does not contain a contribution from S. If we transform
volume integral in (2) into surface integral by means of Gauss divergence theorem, we must include

contribution from all surface bounding V, namely S, § .Sand S i..e.

j (~divP)dV L ﬂ B e Vﬂ (~divP)d

v +5,+S5
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Using above equation, we note that
Q = P. da N )

Substituting this value in (1)

- — 1 - —
ﬂ- E dc — g —ff P da
o &o

S S

- P\ o

E+—]). dc
€o

S

Multiplying through by &,

ﬂ(g"ﬁ R A= g e (8)

N

We get

This equation states that the flux of the vector (SOE + _)Pthrough a closed surface is equal to the total

free charge enclosed by the surface. This vector quantity is named as electric displacement Die.

B = B+ P (5)
Evidently electric displacement D has the same unit as P. i.e. charge per unit area.

In terms of electric displacement vector 5, equation (4) becomes

ff_)D_C)lC = Q (6)
S

i.e. the flux of electric displacement vector across an arbitrary closed surface is equal to the total free
charge enclosed by the surface.
This result is usually referred to as Gauss’ theorem in dielectric.

If we consider into a large number of infinitesimal volume elements, then Gauss’ t

g D de fvﬂ pdv S ¢

Where p is the charge density at a point within volume element dV such thatdV —. 0

fvf divD dV _ fvﬂ pdv
Jvff(dwﬁ— p). (= o

Volume is arbitrary, therefor we get

expressed as

I
o

divD — [
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divD = p
This result is called differential form of Gauss’ theorem in a dielectric.
The main advantage of this method is that the total electrostatic field at each point in the dielectric

medium may be expressed as the sum of parts
1 . 1
E(x, vy = —D y)=Z2—PX, Y, 2Z) .vereennenn(8)
€o €o
Where the first term gi D is related to free charge density through the divergence and the second
0

theorem gi P is proportional to the polarisation of the medium. In vacuum p = sd)E =
0

Electric Polarization(P)

When a dielectric is placed in any external electric field then the dielectric gets polarized and
induced electric dipole moment is produced which is proportional to the external applied electric
field. Now if there are n number of dipoles induced in per unit volume of dielectric then total

polarization will be-

P = nP, e e (D)
So . .
Fn = & appEg
Putting this value in equation (1) we get
= P = negyapkE,

It is clear from the above equation that the direction of polarization is in the direction of the

applied external electric field. And the unit is coulomb /meter?

Electric displacement(D)

We know that the value of electric field depends on the nature of the material, so to study the

dielectric we need such a quantity which does not depends on the nature of the material and this

guantity is known as electric displacement vector D.
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Both E and D are same except that we define E by a force in a charge placed at a point while the

displacement vector is measure by the displacement flux per unit area at that point.

fsﬂﬁD_Ei: = 4

0 q
r p - 2
A
= D = o
Where o is the surface charge density.
Relation between Eand D
We know that the Gauss law is given as-
|| Fa_ g
S &
Where ¢ is the permittivity of the dielectric medium
. 1
= E = —, g
e A
q - 1= —_ -
But— = Bo we have £ = ;D > B ¢F
= B Od?
e X ¢

Where g, is the permittivity of the free space

Current:

Current for study current

—
~+lla

e —
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If the charge passing per unit time is not constant, then the current at any instant will be given as

dq

I =

Current density:

>— dq
I = J de —
f J d& o

From the above equation we can see that the current is the flux of current density as
o = }Ta E

ampear

Its Sl unit is

meter?

Page 31

http://www.rgpvonline.com http://www.a2zsubjects.com



Unit-1 Elasto-dynamics

Equation of continuity:

The law of conservation of charge is called the equation of the

1=

For steady current charge does not stay at any
place, so the current will be constant for all the

places.

Figure(17): Flux of current

= I — f _). ]_)Cly k

N

By divergence theorem

N f*fd:: fvf div.] dv

S
So ﬂ div dv —
14

On differentiating we get
divj = 0
This is the equation of continuity for study current.

Now if current is not stationary i.e. if the current is the function of the time and position

e
then I = J ds T
S

Here negative sign shows that the charge is reduced with respect to time.

But if p is the charge per unit volume then-

o
So jsq-]—ﬁd: _ —%gf p. dV
= fvf divg dv — —%gf p. dV
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= Jvff (diﬁj—%) dv —

S d
= div] = P

dt
This is the equation of continuity for time varying current.

Maxwell’s equations

James Clerk Maxwell took a set of known experimental laws (Faraday's Law, Ampere's Law) and
unified them into a symmetric coherent set of Equations known as Maxwell's Equations. These
equations are nothing but the relation between electric field and magnetic field in terms of

divergence and curl.

S.N. Name Integral form Differential form
Gauss’ Law for > P
1 ﬂ Ed;—fff padv divE = —
electricity s €o
Gauss’ law for - — B
2 Bds 0 divB= 0
magnetism S

Faraday’s Law of
3 fﬁ E dE — ff B ds
induction at

- — — a — — ol
4 | Ampere’s law _‘ﬁ E d& ﬁ; Jd& = ﬂ D ds curl B = 0<ﬁ+ 0%—?)
S N

c

Maxwell’s first equation (Gauss’ law in electric):

Let us consider a volume V which is enclosed in a surface S, then by Gauss’ law the electric flux is

- 1
j-f E de _— —q R )
s €o

Where q is the totat charge enclosed in the volume V

given as

Now if p is the volume charge density then

fﬂ pdV 2

By equation (1) and (2)
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> [j*E—El: _ %fvﬂ pdV

This is the integral form of Maxwell’s equation.

By Gauss’ divergence theorem
R ffﬁE‘as _ ff div BV
N |4

So by applying this on above equation we get

N fvf divBV _ %fvﬂ pdV
- fvff (di{JE:—O) dv =

ButdV +# sd)
€o
= dvE = =
iv £
= div eOE = p
= divD = p [ S OE

Maxwell’s second equation (Gauss’ law in magnetism):
Since the magnetic lines of forces are closed curves so the magnetic flux entering any orbitri
surface should be equal to leaving it

mathematically

B ff Bd = g ()

This is integral form of Maxwell’s second equation.

Now by Gauss’ divergence theorem

N [f*g—as _ IVU div BV

So equation (1) can be written as-

N ﬂf divRV _—
%4
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AsdV # sd)
= divB = 0
Maxwell’s third equation (Faraday’s law):
According to Faraday’s law of electromagnetic induction if the magnetic flux linked with a closed
circuit changes with time then a emf is induced in the close circuit which is known as induced

emf the direction of the induced emf will be such as it oppose the change in the magnetic flux.

It is given as

d¢

= e = - VPO 1§

But by Gauss’ theorem we know that

- o = || e

S
s
So e = ot S
S

Now if E is the electric field produced due to the change in the magnetic flux then the induced

emf will be equal to the line integral of E along the circuit. i.e.
= e = §$E dl e (2)

By equation (1) and (2)

- —> a - —>
Ed - ——
= jg - atﬂ s
C N
%q_, fi‘id_,
N = - fat S e e e e e (3)
C S

Now Stokes’ theorem

N .(}g "E d — ﬂ curl E ds
N

by
QU

Page 35

http://www.rgpvonline.com http://www.a2zsubjects.com



Unit-1 Elasto-dynamics

Applying this to the above equation, we get

ff cwrlE d: _  _ f_ﬁd—é
ot

S s
- a —

= ff <curlB—a—> d = 0

S
As%i 0

So , 9B

curlE+— = 0
at
= curlE = 0B

ot

Maxwell’s fourth equation (Maxwell’s correction in Ampere’s law)

Ampere’s Law is given as

= curlB = ,uof
This equation is true only for time independent electric field and to correct this equation for time

varying field a term must be added
= curlB = po(J+ @) v o e e e (1)

Taking divergence of both side and for simplicity writingffree asf

= div (curl §) = U div(f+ :,_D
But divergence of curl of any quantity is always zero so div (curl §) = 0
Then o div(J+ 7)) = 0 s (2)
= div] = —div], e e e (3)

But by the equation of continuity

And by Maxwell’s first equation
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= _ P
divE = £
= p = edivE i i i e o (5)
By (4) and (5)
: - a : -
= div] = — (g0 divE)
= divj = -2 (div D) (6)
iv] T iv e e e e e
Again by (3) and (6)
= divj, = -2 (div D)
vy T v
-> a —
= div], = E(divD)
- aivj, = div { D)
5 aD
> = —
Ja P

Putting this value in Ampere’s law we get

curl B= @ @+—>

This is Maxwell’s fourth equation.

For vacuum B = ¢Hand D =yE¢

So R S oE
Uocurl H = u0< + q)

. ., OE

= curlH = ( + Oe—at>
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