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Elasto-dynamics 

 

 

Syllabus: 

Simple Harmonic Motion, Electric Flux, displacement vector, Columb law, 

Gradient, Divergence, Curl, Gauss Theorem, Stokes theorem, Gauss law in 

dielectrics, Maxwell’s equation: Integral & Differential form in free space, 

isotropic dielectric medium. 
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Periodic motion: 
If an object repeats its motion on a definite path after a regular time interval then such type of motion is 

called periodic motion. 

1) Vibratory motion or oscillatory motion 

2) Uniform circular motion 

3) Simple harmonic motion 

Vibratory motion: 

If a body in periodic motion moves to and fro about a definite point on a single path, the motion of the body 

is said to be vibratory or oscillatory motion. 

Mean or equilibrium position: 

The point on either side of which the body vibrates is called the mean position or equilibrium position of the 

motion. 

Time period: 

The definite time after which the object repeats its motion, is called time period and it is denoted by ܶ. 

Frequency: 

The number of complete oscillation in one second is called the frequency of that body, it is represented by 

the letter ݂ or ݊ or � its unit is ݖܪ. 

Uniform circular motion: 

 

Figure(1): Uniform circular motion 

Let an object is moving on a circular path of radius ݎ with uniform angular velocity ߱� =ଶగ்
. 
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In right angle triangle Δܱܲܯ 

�ݐ߱ = ܯܱܲ∠  +� �  

ܱܲܯܱ   = cosሺ߱ݐ� +� �ሻ 
 

�ݐcosሺ߱ = ݎݔ  +� �ሻ  

�.ݎ =  ݔ  cosሺ߱ݐ� +� �ሻ   

But ߱� =ଶగ்
  

so ݎ =  ݔ.� cos� ቀଶగ் �ݐ +� �ቁ   

Similarly  

ܱܲܲܯ   = sinሺ߱ݐ� +� �ሻ 
 

�ݐsinሺ߱ = ݎݕ  +� �ሻ  

�.ݎ =  ݕ  sinሺ߱ݐ� +� �ሻ   

�.r =  ݕ  sin� ቀଶగ் �ݐ +� �ቁ   

Both equation (1) and (2) represents the uniform circular motion. Simple (armonic Motion ȋS(MȌ:  

When a body moves periodically on a straight line on either side of a point, the motion is called the simple 

harmonic motion.  
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Graphical representation of SHM 

 

Figure(2): Graphical representation of SHM 

Displacement in SHM: 

Let  a  particle  is moving on  a  circular  path  with  uniform  angular  velocity "߱"  and  the  radius of the circular 

path is "ݎ"; then movement of the point on their axis i.e. ܰ and ܯ is the SHM about the mean position ܱ 

 

Figure(3): SHM 

Let at time ݐ� =� Ͳ the particle is on point ܣ and after time ݐ the position of the particle is ܲ then 

In Δܱܲܰ 

 ௬௥  = sinሺ߱ݐሻ  
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�.ݎ =  ݕ  sinሺ߱ݐሻ  …………………………………………… (1) 

�.ݎ =  ݕ  sin� ቀଶగ்    ቁݐ

This equation represents the displacement of foot dropped from the position of particle on �ܻ −�  .ݏ݅ݔܽ

Velocity in SHM: 

Differentiating equation (1) with respect to ݐ we get- 

ݐ݀ݕ݀   = 
ௗௗ௧ ሺݎ.� sin�   ሻݐ߱

 

ݐ݀ݕ݀   = rω cos�  ϮͿ;.……………  ݐ߱

ݐ݀ݕ݀  �ͳ√ ߱ݎ =  −� sinଶ   ݐ߱
 

ݐ݀ݕ݀  ଶݎ√ ߱ =  −� ଶsinଶݎ   ݐ߱
 

ݐ݀ݕ݀  ଶݎ√ ߱ =  −�  ଶ  Using (1)ݕ

(i) In equilibrium condition ݕ� =� Ͳ 

So ݀ݐ݀ݕ ଶݎ√ ߱ =  −� Ͳଶ 
 

ݐ݀ݕ݀   ߱ݎ = 
 

(ii) In the position of maximum displacement i.e. ݕ� =�  ݎ

So ݀ݐ݀ݕ ଶݎ√ ߱ =  −�   ଶݎ
 

ݐ݀ݕ݀   = Ͳ  
 

Acceleration:  

Again differentiating equation (2) we get- 

 ݀ଶݐ݀ݕଶ  = 
ௗ�ௗ௧  

 

 ݀ଶݐ݀ݕଶ  = 
ௗௗ௧ ሺrω cos�     ሻݐ߱

 ݀ଶݐ݀ݕଶ  = −rωଶ  sin�    ݐ߱
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 ݀ଶݐ݀ݕଶ  = −߱ଶ(3) ………………………………………………………… ݕ 

 
݀ଶݐ݀ݕଶ +� ଶ߱ݕ = Ͳ  

This is a second order differential equation which denotes the equation of SHM in the differential form 

Again by equation (3) 

 
݀ଶݐ݀ݕଶ  = −߱ଶݕ   

Multiplying by ݉ i.e. the mass of the particle executing SHM then 

 ݉ ݀ଶݐ݀ݕଶ  = −݉߱ଶݕ   

   ݕଶ߱݉− = ܨ 

Here negative sing shows that the direction of displacement and acceleration are opposite to one another 

So ׶  ݕ− ∝  ܨ� ଶ߱ =�   ݐ݊ܽݐݏ݊݋ܿ

Time period and frequency: 

 ܽ  = ߱ଶݕ   ⇒ ߱  = √�௬    

 ଶగ்
  = √�௬    

 ଵ்
  = 

ଵଶగ   √�௬    

 =  ߥ 
ଵଶగ   √�௬    

And ܶ  = ʹߨ  √௬�    

Question: A uniform circular motion is  given by the equation ݔ� =� ͳͲ� sinሺʹͲݐ� +� Ͳ.ͷሻ, find  

1) Amplitude 

2) Angular frequency 

3) Time period 

4) Phase 

Sol: Given: ݔ� =� ͳͲ� sinሺʹͲݐ� +� Ͳ.ͷሻ 

Comparing the given equation with the standard equation of uniform circular motion i.e. ݔ� �ܣ= sinሺ߱ݐ� +� �ሻ 
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We get ܣ� =� ͳͲ ݉  ߱� =� ʹͲ௥�ௗ௦ �ߥ   =ఠଶగ = ଶ଴ଶగ =� Ͳ.͵ͳͺ ݏ  �ܶ =ଶగ் = ଶగଶ଴ =� Ͳ.͵ͳͶ ݏ  
Question: A particle is moving with SHM in a straight line. When the displacement of the particle from 

equilibrium position has values ݔଵ and ݔଶ, the corresponding position has valocities ݒଵ and ݒଶ 

show that the time period of oscillation is given by 

�ܶ =� ଶଶݔ√ߨʹ −� ଵଶݒଵଶݔ −�  ଶଶݒ

Sol: In the SHM the velocity is given by- 

 
 

ଶݎ√߱ = ݒ  −�  ଶ …………………………………… (1)ݔ

At ݔଵ velocity is ݒଵ 

 

So ݒଵ = ߱√ݎଶ −�   ଵଶݔ

 

Squaring both sides 

 

ଶݎଵଶ = ߱ଶሺݒ  −�  ଵଶሻ …………………………. (2)ݔ

Again at ݔଶ the velocity is ݒଶ 

 

So  

 
ଶݎଶଶ = ߱ଶሺݒ −�  ଶଶሻ …………………………. (3)ݔ

By equation (2) and (3) 

 

ଵଶݒ  −� ଶݎଶଶ = ߱ଶሺݒ −� �ଵଶሻݔ −� ߱ଶሺݎଶ −�   ଶଶሻݔ

ଵଶݒ  −� ଶଶݔଶଶ = ߱ଶሺݒ −�   ଵଶሻݔ

 
ሺݒଵଶ −� ଶଶݔଶଶሻሺݒ −�   ଵଶሻ = ߱ଶݔ
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 ߱ଶ = 
ሺݒଵଶ −� ଶଶݔଶଶሻሺݒ −�   ଵଶሻݔ

 ߱ = √ሺݒଵଶ −� ଶଶݔଶଶሻ ሺݒ −� ଵଶሻݔ  …………………………. (4) 

Now ߱� =ଶగ்
 

So 

 
ଶଶݔ√ߨʹ = ܶ −� ଵଶݒଵଶݔ −�   ଶଶݒ

Question:  If the earth were a homogeneous sphere and a straight hole was bored in it through 

the centre, then a body dropped in the hole, execute SHM. Calculate the time period 

of its vibration. Radius of the earth is ͸.Ͷ� ×� ͳͲ6݉ and �݃ =� ͻ.ͺ ݉ݏ−ଶ 

 

Solution: The  time  period  of  oscillation  executed  by  the  body  dropped  in  the  hole  along  the 

diameter of earth 

�ܶ =� ܴ݃√ߨʹ =� �͸.Ͷ√ߨʹ ×� ͳͲ6ͻ.ͺ =� ͷͲ͹͹.ͷ ݏ  

Energy of a particle executing SHM: 

A  particle  executing  SHM  possess  potential  energy ሺܷሻ  on  the  account  of  its  position  and  kinetic  energy ሺܧܭሻ on account of motion. 

Potential energy: 

We know  that  the  acceleration  in  a  simple  harmonic  motion  is  directly  proportional     to  the  displacement 

and its direction is towards the mean position  

 ܽ = −߱ଶݕ  

Let ݉ is the mass of particle executing SHM then the force acting on the particle will be- 

�.݉ = ܨ   ܽ  

  ݕଶ߱݉− = ܨ 

If the particle undergoes an infinitesimal displacement against the restoring force, then the small amount of 

work done against the restoring force is given by 

 ܹ݀ = ሺ−ܨሻ.�   ݕ݀

Here negative sign shows that the restoring force is acting the displacement than 
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 ܹ݀ = ݉ ߱ଶ ݕ݀ ݕ  

So the total amount of work done  

 ܹ = ݉߱ଶ   ∫�   ݕ݀ ݕ

 ܹ = 
ͳʹ݉߱ଶݕଶ  

This work done is equal to the potential energy ܷ of the particle at displacement ݕ 

i.e. ܷ = 
ͳʹ݉߱ଶݕଶ  

Kinetic energy: 

If ݒ is the velocity of the particle executing SHM, when the displacement is ݕ then kinetic energy ܧܭ  

 = ܧܭ 
ͳʹ݉ݒଶ  

But for SHM ݒ� =� ߱√ሺݎଶ −�   ଶሻݕ
Where ݎ is the amplitude of SHM  

 

So 

 
 = ܧܭ

ͳʹ �݉ ቀ√߱ݎଶ −�  ଶ ቁଶݕ
  

 = ܧܭ ⇒
ଵଶ ݉߱ଶሺݎଶ −�  ଶሻ          ……………………………. (2)ݕ

Total energy: 

Now the total energy 

�ܷ =  ܧ  +�  =  ܧ ⇒  ܧܭ
ͳʹ݉߱ଶݕଶ + ͳʹ݉߱ଶሺݎଶ −�   ଶሻݕ

 =  ܧ ⇒
ͳʹ݉߱ଶݕଶ + ͳʹ݉߱ଶݎଶ − ͳʹ݉߱ଶݕଶ  

 =  ܧ ⇒
ͳʹ݉߱ଶݎଶ  

Thus we find that the total energy: 

�ܧ (1 ∝� ݉ 

�ܧ (2 ∝�  of SHM ߥ

�ܧ (3 ∝�  ଶ of SHMݎ

Graphical representation of total energy of SHM 
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Figure(4): Total energy of SHM 

 Position vector: 
A position vector expresses the position of a point P in space in terms of a displacement from an arbitrary 

reference point O (typically the origin of a coordinate system). Namely, it indicates both the distance and 

direction of an imaginary motion along a straight line from the reference position to the actual position of 

the point. Displacement Vector: 
A displacement  is  the  shortest  distance  from  the 

initial to the final position of a point P. Thus, it is 

the length of an imaginary straight path, typically 

distinct  from  the  path  actually  travelled  by 

particle or object. A displacement vector 

represents  the  length  and  direction  of  this 

imaginary straight path. 

 

Figure(5): Displacement vector Area Vector: 
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In many problems the area is treated as a vector, 

an  area  element   ݀ݏ  is  represented  by ݀⃗⃗⃗⃗ݏ ,  such 

that  the  area  representing  the  area  vector ݀⃗⃗⃗⃗ݏ  is 

perpendicular  to  the  area element. The  length of 

the  vector ݀⃗⃗⃗⃗ݏ   represents  the  magnitude  of  the 

area element ݀ݏ  
 

Figure(6): Area vector 

 

 Coulomb’s Law: 
According  to  it  the  force  of  attraction  or  repulsion 

between the two point charges is directly 

proportional to the product of the magnitude of the 

charges and inversely proportional to the square of 

the distance between them. 

If two charges ݍଵ and ݍଶ are separated at a distance ݎ  form  one  another  then  the  force  between  these 

charges will be- 

 

 

Figure(7): Two electric charges separated a distance r 

i) Force is proportional  to the product of the magnitude of the charges i.e.  �݂ ∝� �.ଵݍ   ଶݍ

ii) The force is inversely proportional  to the distance between the charges i.e.  �݂ ∝ଵ௥మ 

So  �݂ �.ଵݍ∝ ଶݎଶݍ  �݂ =� �.ଵݍ݇ ଶݎଶݍ  

Where ܭ  is  a  proportionality  called  electrostatic  force  constant,  its  value  depends  on  the  nature  of  the 

medium in which the two charges are located and also the system of units adopted to measure ݍଵ,�  .ݎ ଶ andݍ

So  �݂ =� �.ଵݍ.݇ ଶݎଶݍ  
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Case 1:(when the medium between the charges is air or vacuum ) 

As we know that the force between the charges is given as- �݂ =� �.ଵݍ.݇ ଶݎଶݍ  

If we put ݍଵ =� ଶݍ =� ͳ ܥ and ݎ� =� ͳ ݉ then  �݂ =� ݇ 

So ܭ is the force feels by two charges of ͳ ܥ placed ͳ ݉ apart from one another in vacuum or free space.  

Its value is ܭ� =� ͻ� ×� ͳͲ9 ݊݁݊݋ݐݓ� ×� ଶݎ݁ݐ݁݉ ×�  ܾ݉݋݈ݑ݋ܿ
Case 2:(When the medium between the charges is other than the vacuum) 

If the changes are located in any other medium then ݇� = ͳͶߝߨ଴ . ͳߝ௥ =� ͻ� ×� ͳͲ9 . ͳߝ௥  

Where ߝ௥ is the dielectric constant of relative permittivity. 

Putting this value in equation (1) we get ܨ′ = ͳͶߝߨ଴ߝ௥ . �.ଵݍ ଶݎଶݍ  

Where ܨ′ is the force in the medium ܨ′ = ͳͶߝߨ . �.ଵݍ ଶݎଶݍ  

Where ߝ� =�  .଴ is called the relative permittivity of the mediumߝ ௥ߝ

 

Vector form of the Coulomb’s Law 

Consider two like charges ݍଵ and ݍଶ present at ܣ and ܤ in vacuum at a distance ݎ apart. The two charges 

will exert equal repulsive force on each other,  

Let ܨ ଵଶ be the force on charge ݍଵ due to the charge ݍଶ and ܨ ଶଵ be the force on charge ݍଵ due to charge ݍଶ. 

According to the Couloŵďs’ laǁ, the ŵagŶitude of foƌĐe oŶ Đhaƌge ݍଵ and  ݍଶ is given by 

.|ଵଶ ܨ|   = |ଶଵ ܨ|
ଵସగఌబ ௤భ.௤మ௥మ                  ………………………… (1) 

 

Let ̂ݎଵଶ and ̂ݎଶଵ are the unit vectors in the direction from ݍଵ to ݍଶ and vice versa.  

So the force ܨ ଵଶ is along the direction of unit vector ̂ݎଶଵ, we have ⃗ܨ ͳʹ = ͳͶߝߨͲ . �.ͳݍ ʹݎݍʹ  ͳʹݎ̂ 
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And  ⃗ܨ ʹͳ = ͳͶߝߨͲ . �.ͳݍ ʹݎݍʹ  ʹͳݎ̂ 

These two equations show the Couloŵďs’ laǁ iŶ ǀeĐtoƌ foƌŵ. 

 Electric flux: 
Number of electric lines of forces passing normally through the surface, when held in the electric field. It is 

denoted by �ா. There are two types of electric flux- 

1. Positive electric flux: When electric lines of forces leave any body through its surface it is considered 

as positive electric flux. 

2. Negative  electric  flux:  When  lines  of  forces  enter  through  any  surface,  it  is  considered  as  the 

negative electric flux. 

Measurement: Let us consider a small area ݀⃗⃗⃗⃗ݏ  of a 

closed  surface ܵ.  The  electric  field ሺ⃗ܧ ሻ  produced 

due  to  the  charge ݍ  will  be  radially  outwards 

which  will  be  along ݊̂.  Now  the  normal  to  the 

surface  area ݀ݏ  is ݀⃗⃗⃗⃗ݏ   as  shown  in  the  figure, 

hence the angle between ݀⃗⃗⃗⃗ݏ  and ݊̂ is � 

So  the  electric  lines  of  forces  from  the  surface 

area will be given as- ݀�  = ⃗ܧ .� �ܧሺ =  �݀   ⃗⃗⃗⃗ݏ݀ cos� �ሻ݀ݏ………….;ϭͿ 
 

 

Figure(8): Electric flux 

Where ܧ� cos� � is the component of electric field ⃗ܧ  along  ݀⃗⃗⃗⃗ݏ . 

Hence the electric flux through a small elementary surface area is equal to the product of the small area and 

normal component of ⃗⃗ܧ  along the direction of the elementary area ݀⃗⃗⃗⃗ݏ  ⃗. 
Over the hole surface, �ா �ܧ∮ =   �cosݏ݀ �   �ா   = ∮ �. ܧ⃗  (2) …………………………                                  ⃗⃗⃗⃗ݏ݀
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Gradient of a scalar field: 
The gradient of a scalar function � is a vector whose magnitude 

is  equal  to  maximum  rate  of  chcnge  of  scalar  function �  with 

respect  to  the  space  variable ሺ∇⃗⃗ ሻ  and  has  direction  along  that 

change. ݃݀ܽݎ �� =߲�߲݊  ݊̂ 

In the scalar field let there be two level surfaces ܵଵ and ܵଶ close 

together  characterised  by  the  scalar  function �  and �� +� ݀� 

respectively. Consider point ܲ and ܴ on the level surfaces ܵଵ and ܵଶ respectively. Let ݎ  and ݎ � +� ܴ⃗⃗⃗⃗ܲ be the position vector of ܲ and ܴ. Then  ⃗⃗⃗⃗ݎ݀  ⃗ �= ⃗⃗⃗⃗ݎ݀ = ଓ̂݀ݔ� +� ଔ̂݀ݕ� +�  ݖ݀̂݇

Now as � is a function of ሺݔ,� �,ݕ  .ሻ i.eݖ

 �� =� �ሺݔ,� �,ݕ  ሻݖ

Then the total differentiation of this function can be given as 

  

Figure(9): Gradient of a scalar field 

 ݀� = 
ݔ߲�߲ �ݔ݀ ݕ߲�߲+ �ݕ݀ ݖ߲�߲+   ݖ݀

 ݀� = (ଓ̂ ݔ߲�߲ +� ଔ߲̂�߲ݕ +� ݇̂ �(ݖ߲�߲ .� (ଓ̂݀ �ݔ +� ଔ̂݀ݕ� +�   (ݖ݀̂݇

 ݀� = ሺ∇⃗⃗ �ሻ݀(1) ……………………………………………………  ⃗⃗⃗⃗ݎ 

Agian if ݀݊ represents the distance along the normal from point ܲ to the surface ܵଶ to point ܳ, then 

 ܲܳ = ݀݊  

In the ∆ܴܲܳ 

�cos = ݎ݀݊݀  �  

�cos ݎ݀ = ݊݀  �  

Now if we consider a unit vector along ݀݊ as ݊̂  

then 

�. ⃗⃗⃗⃗ݎ݀ = ݊݀  ݊̂ …………………………………………………… (2) 

If we proceed form ܲ to ܳ then value of scalar function � increases by an amount ݀�  ׶ ݀� = 
߲�߲݊  ݀݊   

 ݀� = 
డ�డ� ሺ݀⃗⃗⃗⃗ݎ .� ݊̂ሻ          [UsiŶg ;ϮͿ……………………………. (3) 
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By equation (1) and (2) 

 (∇⃗⃗ .� �).�  =  ⃗⃗⃗⃗ݎ݀
డ�డ� ሺ݀⃗⃗⃗⃗ݎ .� ݊̂ሻ   

 (∇⃗⃗ .� �) = 
డ�డ� ݊̂   

 = � ݀ܽݎ݃ 
డ�డ� ݊̂   

Note:  

 

∇⃗⃗ =� ቀଓడ̂డ௫ +� ଔడ̂డ௬ +� ݇̂ డడ௭ቁ is called del or Nabla operator. 

Note: ݃݀ܽݎ � = ∇⃗⃗ .� ଓ̂) = � ݀ܽݎ݃  � ݔ߲߲ +� ଔ߲߲̂ݕ +� ݇̂ �(ݖ߲߲ .� � 

ଓ̂) = � ݀ܽݎ݃ ݔ߲�߲ +� ଔ߲̂�߲ݕ +� ݇̂  (ݖ߲�߲

 

Note: The  gradient  of  a  scalar  field  has  great  significant  in  physics.  The  negative  gradient  of 

electric potential of electric field at a point represents the electric field at that point. i.e. ⃗ܧ =� ܸ  ݀ܽݎ݃−
Note: The gradient of a scalar field is a vector quantity. 
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Divergence of a vector field: 
The  divergence  of  a  vector  field ܣ   at  a 

certain  point ܲሺݔ,� �,ݕ  ሻ  is  defined  as  theݖ

outward  flux  of  the  vector  field ܣ    per  unit 

volume  enclosed  through  an  infinitesimal 

closed surface surrounding the point "ܲ". 

 

�= ܣ ݒ݅݀  lim �→଴ ௦ ܣ׭ .� � ⃗⃗⃗⃗ݏ݀  

�= ܣ ݒ݅݀  lim �→଴ ��ߜ  

 

Consider a infinitesimal rectangular box with 

sides Δݔ,� Δݕ,� Δݖ and one corner at the point ܲሺݔ,� �,ݕ  ሻ  in  the  region  of  any  vectorݖ

function ܣ  with rectangular faces 

perpendicular to co-ordinates axis. 

 

 Figure(10): divergence of a vector field 

The  flux  emerging  outwards  from 

surface ܴܳܩܨ i.� e.� surface ʹ, ߜ�ଶ௫ 
= ∬ ଶ௫ܣ̅ .� ொிீோݏ݀  

 

∬ = ଶ௫�ߜ (ଓ̂̅ܣଶ௫ +� ଔ̂̅ܣଶ௬ +� �.(ଶ௭ܣ̅̂݇ ሺଓΔ̂ݕ,� Δݖሻொிீோ  
 

Where ܣଶ̅̅ ̅  is the average of the vector function over the surface ܴܳܩܨ i.e. surface ʹ ߜ�ଶ௫ = ∬ ଶ௫̅̅ܣ ̅̅ ̅.� Δݕ.� Δݖொிீோ  …………………………………………. (1) 

 

Similarly  

The  flux  emerging  out  from  the 

surface ܲܵܪܧ i.e. surface ͳ,�  ଵ௫�ߜ
= ∬ �.ଵ௫ܣ̅ ௉ாுௌݏ݀  

 

∬ = ଵ௫�ߜ (ଓ̂̅ܣଵ௫ +� ଔ̂ܣଵ̅௬ +� �.(ଵ௭ܣ̅̂݇ ሺ−ଓΔ̂ݕ,� Δݖሻ௉ாுௌ  
 

∬ = ଵ௫�ߜ �.ଵ௫ܣ̅− Δݕ.� Δݖ௉ாுௌ  ………………………………………. (2) 

Thus net outwards flux of vector ܣ  through the two faces perpendicular to ܺ� −axis,  
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ଶ௫�ߜ = ௫�ߜ +� ଶ௫ܣ௫ = ∬ሺ̅�ߜ  ଵ௫�ߜ −� �.ݕଵ̅௫ሻሺΔܣ Δݖሻ ……………….. (3) 

But ሺܣଶ௫̅̅ ̅̅ ̅ −� ଵ௫̅̅ܣ ̅̅ ̅ሻ = ܣ௫ሺݔ� +� Δݔ,� �,ݕ ሻݖ −� �,ݔ௫ሺܣ �,ݕ   ሻݖ

 ሺܣଶ௫̅̅ ̅̅ ̅ −� ଵ௫̅̅ܣ ̅̅ ̅ሻ = 
ݔ௫߲ܣ߲  Δ(4) …………………………………………………… ݔ 

Where 
డ��డ௫  is the variation of ܣ௫ with distance along ܺ� −axis by equation (2) and (3) 

Thus net outward flux of vector function ܣ  through the two faces perpendicular to ܺ� −axis 

 = ௫�ߜ 
డ��డ௫  ΔݔΔݕ,� Δݖ                          [ Using equation (3)  

 

Similarly perpendicular to �ܻ −axis 

 = ௬�ߜ 
ݕ௬߲ܣ߲  ΔݔΔݕΔݖ 

 

 

Similarly perpendicular to ܼ� −axis 

 = ௭�ߜ 
ݖ௭߲ܣ߲  ΔݔΔݕΔݖ 

 

Therefore whole outward flux through infinitesimal box 

 

௫�ߜ = �ߜ  +� ௫�ߜ +�   ௭�ߜ

ݔ௫߲ܣቆ߲ = �ߜ  + ݕ௬߲ܣ߲ + ݖ௭߲ܣ߲ ቇΔݔΔݕΔݖ  

Now ݀݅ܣݒ  at any point, which is the flux enclosed per unit infinitesimal  volume surrounding that point is 

given by- 

lim Δ௫Δ௬Δ௭→଴ =  ܣ ݒ݅݀   ݖΔݕΔݔΔ�ߜ
 

lim Δ௫Δ௬Δ௭→଴ =  ܣ ݒ݅݀  ݔ௫߲ܣ߲) + ݕ௬߲ܣ߲ + ݖ௭߲ܣ߲ )� ΔݔΔݕΔݖΔݔΔݕΔݖ  

 

 =  ܣ ݒ݅݀ 
ݔ௫߲ܣ߲ + ݕ௬߲ܣ߲ + ݖ௭߲ܣ߲  

 

ଓ̂) =  ܣ ݒ݅݀  ݔ߲߲ +� ଔ߲߲̂ݕ +� ݇̂ (ݖ߲߲ (ଓ̂ܣ௫ +� ଔ̂ܣ௬ +�  (௭ܣ̂݇
 

�. ⃗⃗∇ =  ܣ ݒ݅݀     ܣ

Note: Divergence of a vector field is a scalar quantity. 

Note: If ݀݅ܣ ݒ =�  ݁ݒ+
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it indicates the existence of the source of fluid at that point. 

Note: If ݀݅ܣ ݒ =�  ݁ݒ−
It means fluid is flowing towards the point and thus there exist a sink for the fluid. 

Note: If ݀݅ܣ ݒ =� Ͳ 
It means the fluid is flowing continuously from that point. In other words this means that the flux of 

the  vector  function  entering  and  leaving  this  region  is  equal.  This  condition  is  called  solenoidal 

vector. 
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Curl of a vector field: 
If ܣ  is any vector field at any point ܲ and ݏߜ an 

infinitesimal test area at point ܲ then ܿܣ ݈ݎݑܿ ݈ݎݑ =� limఋ௦→଴ �. ܣ∮ ݏߜ ⃗⃗⃗⃗ݎ݀  ݊̂ 

Let us consider an infinitesimal rectangular area ܪܩܨܧ with sides Δݔ and Δݕ parallel to ܺ� −� ܻ 

plane in the region of vector function ⃗⃗ܣ . 
Let the coordinate of ܧ be ሺݔ,� �,ݕ ௫ܣ ሻ. Ifݖ ,� �,௬ܣ �= ܣ⃗⃗ at ܲ then ܣ ௭ are the Cartesian components ofܣ ሺଓ̂ܣ௫ +� ଔ̂ܣ௬ +�  ௭ሻܣ̂݇

 

Figure(11): Curl of a vector field 

 
Now the line integral of vector field 

along the path ܨܧ ሺ ଵܶ௫ሻ 
= ∫� ாி ܣ .�    ⃗⃗⃗⃗ݎ݀

ݔͳܣ̅̂݅) =   +� ݕͳܣ݆̅̂ +� �.(ݖͳܣ̅̂݇ ሺଓ ̂Δݔሻ  

  ݔଵ௫ Δܣ̅ =  

Where ̅ܣଵ௫  is the average value of ܺ� −component of the vector function over the path ܨܧ  

Similarly for the Path ܪܩ 

 ଶܶ௫ = ∫� ாி ܣ .�    ⃗⃗⃗⃗ݎ݀

ݔʹܣ̅̂݅) =   +� ݕʹܣ݆̅̂ +� �.(ݖʹܣ̅̂݇ ሺ−ଓ ̂Δݔሻ  

  ݔଶ௫ Δܣ̅− =  

Where ̅ܣଶ௫ is the average value of ܺ� −component of vector function over the path ܪܩ.  

Hence the contribution to line integral ∮ . ܣ⃗⃗ �ܺ ሻ parallel toܪܩ and ܨܧform two path ሺ  ⃗⃗⃗⃗ݎ݀ −axis is 

 ௫ܶ = ଵܶ௫− ଶܶ௫  

  = −ሺݔʹܣ −   ݔሻΔݔͳܣ

As the rectangle is infinitesimal the difference between the average of ܣ௫  ሺ݅.� ݔʹܣ̅.݁ −  ሻ along these twoݔͳܣ̅

paths may be approximated to the difference between the values of ܣ௫ at ܧ and ܪ  

Thus- 

ଶ௫ܣ̅  − ு௫ܣ = ଵ௫ܣ̅ −�   ா௫ܣ

ଶ௫ܣ̅  − �,ݔ௫ሺܣ = ଵ௫ܣ̅ �ݕ +� Δݕ,� ሻݖ −� �,ݔ௫ሺܣ �,ݕ   ሻݖ
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ଶ௫ܣ̅  −  = ଵ௫ܣ̅
ݕ௫߲ܣ߲  Δݕ  

Hence the contribution to the line integral ∮ �. ܣ ாிீு ⃗⃗⃗⃗ݎ݀  from the path ܨܧ and ܪܩ  

 ௫ܶ = 
ݕ௫߲ܣ߲ ΔݕΔ(2) …………………………………………… ݔ 

Similarly by the path ܩܨ and ܧܪ 

 ௬ܶ = 
ݔ௬߲ܣ߲ ΔݔΔ(3) …………………………………………… ݕ 

Therefore the line integral along the whole rectangular  ܪܩܨܧ form (2) and (3) is given by- 

 ܶ = ∮� ሺ௫ܶ +� ௬ܶሻ.� ாிீு ⃗⃗⃗⃗ݎ݀   

 ܶ = ∮� �. ܣ ாிீு ⃗⃗⃗⃗ݎ݀   

ݔ௬߲ܣቆ߲ = ܶߜ  − ݕ௫߲ܣ߲ ቇΔݕΔ(4) ……………………………… ݔ 

Now ሺܿܣ ݈ݎݑሻ௭ = limΔ௬Δ௫→଴ ݏߜܶߜ   

 ሺܿܣ ݈ݎݑሻ௭ = limΔ௬Δ௫→଴ ݔ௬߲ܣ߲) − ݕ௫߲ܣ߲ )� ΔݕΔݔΔݕΔݔ  
 

 ሺܿܣ ݈ݎݑሻ௭ = ቆ߲ܣ௬߲ݔ − ݕ௫߲ܣ߲ ቇ ……………………………………. (5) 

Similarly 

 ሺܿܣ ݈ݎݑሻ௬ 
ݖ௫߲ܣ߲) = − ݔ௭߲ܣ߲ ) ……………………………………. (6) 

and ሺܿܣ ݈ݎݑሻ௫ = ቆ߲ܣ௭߲ݕ − ݖ௬߲ܣ߲ ቇ ……………………………………. (7) 

Summing up the results given in (5), (6) and (7) we get 

ሻ௫ܣ ݈ݎݑଓ̂ሺܿ =  ܣ ݈ݎݑܿ  +� ଔ̂ሺܿܣ ݈ݎݑሻ௬ +� ݇̂ሺܿܣ ݈ݎݑሻ௭  

�ଓ̂ =  ܣ ݈ݎݑܿ  ݕ߲ݖܣ߲) − ݖ߲ݕܣ߲ )� +� ଔ̂� ݖ߲ݔܣ߲) − ݔ߲ݖܣ߲ )� +� ݇̂ ݔ߲ݕܣ߲) − ݕ߲ݔܣ߲ )  

   ] =  ܣ ݈ݎݑܿ 
 ଓ̂ ଔ̂ ݔ߲߲̂݇ ݕ߲߲ ௫ܣݖ߲߲ ௬ܣ    [௭ܣ

 
  

�× ⃗⃗∇ =  ܣ ݈ݎݑܿ     ܣ

Note: The curl of a vector field is sometime called circulation or rotation or simply ݐ݋ݎ. 
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Note: If ܿܣ ݈ݎݑ =� Ͳ then vector field ܣ  is called Lamellar field. 
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Gauss’ Divergence Theorem: 
According to this theorem the volume integral of 

divergence of a vector field ܣ  over a volume ܸ is 

equal  to  the  surface  integral  of  that vector  field ܣ   taken  over  the  surface ܵ  which  enclosed  that 

volume ܸ. i.e. ∭(݀݅ܣ ݒ  )݀ݒ� =� ∬� �.  ܣ ݀ܽ⃗⃗ ⃗⃗ ௌ�  

Consider a volume ܸ enclosed by a surface ܵ this 

volume  can  be  divided  into  small  elements  of 

volumes ଵܸ,� ଶܸ …� …� ܸ� which are enclosed by the 

elementary surface ܵଵ,� ଶܵ …� …� …� …� ܵ� 

respectively.  By  definition  the  flux  of  a  vector 

field ܣ  diverging out of the ݅௧ℎ element is 

 

Figure(12): Gauss’ DiǀeƌgeŶĐe thoƌeŵ 

�(  ܣ ݒ݅݀)   = 
׭ �.  ܣ ݀�ܽ⃗⃗ ⃗⃗ ⃗⃗ ௌ� �ܸ   

�(  ܣ ݒ݅݀)  .� ܸ� = ∬� �.  ܣ ݀ܽ⃗⃗ ⃗⃗ ௌ�  ………………………………………………… (1) 

On LHS of equation we add the quantity (݀݅ܣ ݒ  )� .� ܸ� for each element ଵܸ,� ଶܸ …� …� ܸ� 

�(  ܣ ݒ݅݀)∑  .� ܸ��
�=ଵ �ܸ݀ ( ܣ ݒ݅݀)∭ =    

On RHS of equation (1) if we add the quantity ׭ �.  ܣ ݀ܽ⃗⃗ ⃗⃗ ௌ�  for each ܵଵ,� ଶܵ …� …� …� …� ܵ� we get the terms only on 

the outer surface ܵ 

Sum comes out to be  

 ∑� ∬� �. ܣ ݀�ܽ⃗⃗ ⃗⃗ ⃗⃗ ௌ�  �
�=ଵ  = ∬� �. ܣ ݀ܽ⃗⃗ ⃗⃗ ௌ   

So putting these values in equation (1) we get 

So ∭(݀݅ܣ ݒ ) ܸ݀�  = ∬� �. ܣ ݀ܽ⃗⃗ ⃗⃗ ௌ   

This is the Gauss’ diǀeƌgeŶĐe theoƌeŵ. 

  

http://www.rgpvonline.com http://www.a2zsubjects.com



 
Unit-1 Elasto-dynamics 

 

 Page 23 
 

Stokes theorem: 
According  to  this  theorem,  the  line  integral  of  a  vector  field ܣ   along  the  boundary  of  a  closed  curve ܥ  is 

equal to the surface integral of curl of that vector field when the surface integration is done over a surface ܵ 

enclosed by the boundary ܥ i.e.  ∮� �. ܣ ݈݀⃗⃗  ⃗௖ =� ∬� �. ܣ ݎ݈ݑܿ ݀ܽ⃗⃗ ⃗⃗ ௌ  

 

Figure(13): Stokes theorem 

Consider  a  vector ܣ   which  is  a  function  of  position.  We  are  to  find  the  line  integral  ∮ �. ܣ ݈݀⃗⃗  ⃗௖  along the boundary of a closed curve ܥ. If we divide the area enclosed by the curve ܥ in two parts by 

a line ݍ݌, we get two closed curve ܥଵ and ܥଶ. The line integral of vector ܣ  along the boundary of ܥ will be 

equal to the sum of integral of ܣ  along ܥଵܥݍ݌ଵ and ܥଶܥ݌ݍଶ 

 

 

 ∮� �. ܣ ݈݀⃗⃗  ⃗௖  = ∮� �. ܣ ݈݀⃗⃗  ⃗௖భ +� ∮� �. ܣ ݈݀⃗⃗  ⃗௖మ   

Similarly  if  we  divide  the  area  enclosed  by  the  curve ܥ  in  small  element  of  area ݀ܽଵ ݀ܽଶ …� …� …� …  by  the 

curve ܥଵ,� ଶܥ …� …� …� ….  As  shown  in  the  figure.  Then  the  sum  of  line integrals  along  the  boundary  of  these 

curves ܥଵ,� ଶܥ …� …� …� ..(taken anticlockwise) will be 

 ∮� �. ܣ ݈݀⃗⃗  ⃗௖  = ∑� ∮� �. ܣ ݈݀⃗⃗  ⃗௖೙   

By the definition of curl, we have 
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 =  ܣ ݈ݎݑܿ 
∮ �. ܣ ݈݀⃗⃗  ⃗௖೙݀ �೙   

 
�. ܣ ݈ݎݑܿ ݀ �೙  = ∮� �. ܣ ݈݀⃗⃗  ⃗௖೙   

 ∮� �. ܣ ݈݀⃗⃗  ⃗௖  = ∑� �. ܣ ݈ݎݑܿ ݀�ܽ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =� ∬� �. ܣ ݎ݈ݑܿ ݀ܽ⃗⃗ ⃗⃗ ௌ   

 ∮� �. ܣ ݈݀⃗⃗  ⃗௖  = ∬� �. ܣ ݎ݈ݑܿ ݀ܽ⃗⃗ ⃗⃗ ௌ   

 Gauss Law 

According  to  this  law,  the  net  electric  flux  through  any  closed  surface  is 
ଵఌబ  times  of  the  total  charge 

present inside it. 

 � = 
ଵఌబ  ܳ                            ………………………… (1) 

But by the definition of electric flux 

⇒ � = ∬� �.⃗ ܧ ௦ ⃗⃗⃗⃗ݏ݀              …� …� …� …� …� …� …� …� …� … (2) 

So by equation (1) and (2) 

so ∬� �.⃗ ܧ ௦ ⃗⃗⃗⃗ݏ݀  ଴ߝܳ = 
 

This is the iŶtegƌal foƌŵ of Gauss’ laǁ.  

Proof:  

Case1: 

When  the  charge  lies  inside  the  arbitrary 

closed surface. 

Let charge ܳ lies inside the arbitrary surface at 

point ܱ 

Now  let  us  consider  an  infinitesimal  area ݀⃗⃗⃗⃗ݏ  

on this surface which contain the point ܲ, the 

direction of the area vector ݀⃗⃗⃗⃗ݏ  is 

perpendicular  to the  surface  and  electric  field 

 

Figure(14): Gauss Law 
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 then electric field  ⃗⃗⃗⃗ݏ݀ makes an angle � with  ܧ⃗

will be given as- 

 

 =  ܧ⃗ 
ଵସగఌబ ொ௥మ  ……………………………………. (3) 

Now the flux emerging out of the surface area ݀⃗⃗⃗⃗ݏ  will be 

 

�. ܧ⃗ =  �݀  �ݏ݀ ܧ =  �݀ ⇒   ⃗⃗⃗⃗ݏ݀ cos� �  

Where � is the angle between ⃗ܧ  and ݀⃗⃗⃗⃗ݏ  

So putting the value of ⃗ܧ  we get 

 

 
݀� = 

ͳͶߝߨ଴ ଶݎܳ �ݏ݀  cos� � 
 

⇒ ݀� = ܳͶߝߨ଴ �ݏ݀ cos� ଶݎ�     

But       
ௗ௦� cos� �௥మ =� ݀ ߱ i.e. solid angle 

 

 ݀� = 
ܳͶߝߨ଴ ݀߱    

Now total flux  

 

 � = ∫ ܳͶߝߨ଴ ݀߱ 
 

⇒ � = 
ܳͶߝߨ଴ ∫� ݀߱   

 

But ߱݀׬� =� Ͷߨ 

 � = 
ܳͶߝߨ଴ Ͷߨ    

 ଴ߝܳ = � ⇒
 

Case 2: 

When  the  charge  lies  outside  the  closed  surface  then  the  flux  entering  and  leaving  the  surface 
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area will be equal and opposite then �� =� Ͳ 

 

Gauss law in the differential form (Poisson’s equation and Laplace’s equationȌ 

If the charge is continuous distributed over the volume and charge density is ߩ 

 

then ܳ = ∭� �ܸ݀ ߩ   

Now by Gauss theorem the flux emerging out of this surface which enclosed volume ܸ 

 

 ∬� ௦⃗ ܧ .�  =  ⃗⃗⃗⃗ݏ݀
ͳߝ଴  ∭� �ܸ݀ ߩ           …� …� …� …� …� …� …� …� …� … (1) 

By Gauss divergence theorem 

 ∬� ௦⃗ ܧ .� �∭ =  ⃗⃗⃗⃗ݏ݀ �⃗ ܧ ݒ݅݀  ܸ݀      …� …� …� …� …� …� …� …� …� … (2) 

By equation (1) and (2) 

⇒ ∭� �⃗ ܧ ݒ݅݀  ܸ݀ = 
ͳߝ଴  ∭� �ܸ݀ ߩ  

 

⇒ ∭� ⃗ ܧ ݒ݅݀) − �(଴ߝߩ  ܸ݀ = Ͳ 
 

But as we know that ܸ݀� ≠� Ͳ 

So ݀݅ܧ⃗ ݒ −  ଴ = Ͳߝߩ
 

⇒ 

  ܧ⃗ ݒ݅݀ 

 

= 
଴ߝߩ                           …� …� …� …� …� …� …� …� …� … (3) 

This is the diffeƌeŶtial foƌŵ of Gauss’ laǁ aŶd also kŶoǁŶ as PoissoŶ’s eƋuatioŶ 

Now if we consider the charge less volume then ߩ� =� Ͳ 

 

So  ݀݅ܧ⃗ ݒ  = Ͳ                                …� …� …� …� …� …� …� …� …� …(4) 

This equation is Laplace equation. 

Again by equation (3) 

http://www.rgpvonline.com http://www.a2zsubjects.com



 
Unit-1 Elasto-dynamics 

 

 Page 27 
 

 =  ܧ⃗ ݒ݅݀ 
  ଴ߝߩ

We know that ⃗ܧ =� ܸ  ݀ݎܽ݃−
So  

 
 = ሻܸ ݀ܽݎ݃−ሺ ݒ݅݀

  ଴ߝߩ

⇒ −∇⃗⃗ .� ሺ∇⃗⃗ ܸሻ = 
  ଴ߝߩ

⇒ ∇ଶ ܸ = −   ଴ߝߩ

⇒ ߲ଶܸ߲ݔଶ + ߲ଶܸ߲ݕଶ + ߲ଶܸ߲ݖଶ  = −  :଴  Gauss law ȋin Presence of dielectricsȌߝߩ
The Gauss’ laǁ ƌelates the eleĐtƌiĐ fluǆ aŶd Đhaƌge. The theoƌeŵ states that the Ŷet eleĐtƌiĐ fluǆ aĐƌoss aŶ 

arbitrary  closed  surface  drown  in  an  electric  field  is  equal  to 
ଵఌ೚  times  the  total  charge  enclosed  by  the 

surface. Now we want to extend this theorem for a region containing free charge embedded in dielectric. 

In figure the dotted surface ܵ in an imaginary closed surface drown in a dielectric medium. There is certain 

amount of free charge ܳ in the volume bounded by surface. Let us assume that free charge exists on the 

surface  of  three  conductors  in  amount ݍଵ,� �,ଶݍ ଷݍ …� ..  In  a  dielectric  there  also  exits  certain  amount  of 

polarisation (bound) charge ܳ௣.  

HeŶĐe ďǇ Gauss’ theoƌeŵ 

 ∬� �.⃗ ܧ ݀ܽ⃗⃗ ⃗⃗ ௌ  = 
ͳߝ଴ (ܳ′ +� ௣ܳ) ……………….;ϭͿ 

Where ܳ� =� ଵݍ +� ଶݍ +�   ଷ is the total free charge and ܳ௣ is the polarisation (bound) charge byݍ

 ܳ௣ = ∬ ܲ⃗ .� ݀ܽ⃗⃗ ⃗⃗ ௌభ+ௌమ+ௌయ +� ∭ሺ−݀݅ܲݒሻܸ݀�  ……………….;ϮͿ 

Here ܸ is the volume of the dielectric enclosed by ܵ. As there is no boundary of the dielectric at ܵ, 

therefore the surface integral in equation (2) does not contain a contribution from ܵ. If we transform 

volume integral in (2) into surface integral by means of Gauss divergence theorem, we must include 

contribution from all surface bounding ܸ, namely ܵ,� ଵܵ,� ଶܵ and ܵଷ i..e.  

 

 ∫ሺ−݀݅ܲݒሻܸ݀�  = [ ∬ ܲ⃗ .� ݀ܽ⃗⃗ ⃗⃗ ௌభ+ௌమ+ௌయ +� ∭ሺ−݀݅ܲݒሻܸ݀� ]  
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Using above equation, we note that 

 ܳ௣ = ∬ ܲ⃗ .� ݀ܽ⃗⃗ ⃗⃗ ௌభ+ௌమ+ௌయ  ……………….;ϯͿ 

Substituting this value in (1) 

We get 

 ∬� �.⃗ ܧ ݀ܽ⃗⃗ ⃗⃗ ௌ ଴ߝܳ =   � −ͳߝ଴  ∬� ܲ ⃗.� ݀ܽ⃗⃗ ⃗⃗ ௌ   

 ∬ቆ⃗ܧ + ଴ቇߝ ⃗ܲ .� ݀ܽ⃗⃗ ⃗⃗ ௌ    ଴ߝܳ = 

Multiplying through by ߝ଴ 

�+ ܧ଴⃗ߝ)∬  ܲ ⃗).� ݀ܽ⃗⃗ ⃗⃗ ௌ  = ܳ ……………….;ϰͿ 

This  equation  states  that  the  flux of  the  vector ሺߝ଴⃗ܧ +� ܲ ⃗ሻ  through  a  closed surface  is equal  to  the  total 

free charge enclosed by the surface. This vector quantity is named as electric displacement ⃗⃗ܦ  i.e. 

 

�+ ܧ଴⃗ߝ =  ܦ⃗⃗  ܲ ⃗ ……………………..;ϱͿ 

Evidently electric displacement  ⃗⃗ܦ  has the same unit as ܲ⃗ . i.e. charge per unit area. 

In terms of electric displacement vector ⃗⃗ܦ , equation (4) becomes 

 ∬� �. ⃗⃗ܦ ݀ܽ⃗⃗ ⃗⃗ ௌ  = ܳ ……………………..;ϲͿ 

i.e.  the  flux  of  electric  displacement  vector  across  an  arbitrary  closed  surface  is  equal  to  the  total  free 

charge enclosed by the surface. 

This ƌesult is usuallǇ ƌefeƌƌed to as Gauss’ theoƌeŵ iŶ dieleĐtƌiĐ. 

If  ǁe  ĐoŶsideƌ  iŶto  a  laƌge  Ŷuŵďeƌ  of  iŶfiŶitesiŵal ǀoluŵe  eleŵeŶts,  theŶ  Gauss’  theoƌeŵ ŵaǇ  also  ďe 

expressed as  

 ∬� �. ⃗⃗ܦ ݀ܽ⃗⃗ ⃗⃗ ௌ  = ∭� �ܸ݀ ߩ  ……………………..;ϳͿ 

Where ߩ is the charge density at a point within volume element ܸ݀ such that ݀ �ܸ →� Ͳ. 

 ∭� �. ⃗⃗ܦ ݒ݅݀ ܸ݀�  = ∭� �ܸ݀ ߩ   

 ∭ሺ݀݅ܦ⃗⃗ ݒ −� �.ሻߩ ܸ݀�  = Ͳ  

 Volume is arbitrary, therefor we get 

�− ܦ⃗⃗ ݒ݅݀    Ͳ = ߩ
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  ߩ =  ܦ⃗⃗ ݒ݅݀ 

This result is called differential foƌŵ of Gauss’ theoƌeŵ iŶ a dieleĐtƌiĐ. 

The  main  advantage  of  this  method  is  that  the  total  electrostatic  field  at  each  point  in  the  dielectric 

medium may be expressed as the sum of parts 

�,ݔሺܧ  �,ݕ  = ሻݖ
ͳߝ଴ �,ݔሺ ܦ⃗⃗  �,ݕ ሻݖ − ͳߝ଴  ܲሺݔ,� �,ݕ  ሻ …………………..….;ϴͿݖ

Where  the  first  term 
ଵఌబ  is  related  to  free  charge  density  through  the  divergence  and  the  second   ܦ⃗⃗ 

theorem 
ଵఌబ  ܲ is proportional to the polarisation of the medium. In vacuum ߩ� =� Ͳ so ⃗ܧ = ஽⃗⃗ ఌబ  Electric Polarizationሺ�ሻ 

When  a  dielectric  is  placed  in  any  external  electric  field  then  the  dielectric  gets  polarized  and 

induced electric dipole moment is produced which is proportional to the external applied electric 

field.  Now  if  there  are ݊  number  of  dipoles  induced  in  per  unit  volume  of  dielectric  then  total 

polarization will be- 

 ܲ⃗  = ݊ �ܲ�⃗⃗⃗⃗  ⃗              …� …� …� …� …� …� …� …� …� … (1) 

But �ܲ�⃗⃗⃗⃗   ଴⃗⃗⃗⃗ܧ ∝ ⃗ 
 

So  

 
�ܲ�⃗⃗⃗⃗   ଴⃗⃗⃗⃗ܧ��� ଴ߝ = ⃗ 

 

Putting this value in equation (1) we get ⇒ ܲ⃗  = ݊ ߝ଴ ���ܧ଴⃗⃗⃗⃗  
 

It  is  clear  from  the  above  equation  that  the  direction  of  polarization  is  in  the  direction  of  the 

applied external electric field. And the unit is ܿݎ݁ݐ݁݉/ܾ݉݋݈ݑ݋ଶ Electric displacementሺܦሻ 

We know that the value of electric field depends on the nature of the material, so to study the 

dielectric we need such a quantity which does not depends on the nature of the material and this 

quantity is known as electric displacement vector ⃗⃗ܦ . 
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Both ⃗ܧ  and ⃗⃗ܦ  are same except that we define ⃗ܧ  by a force in a charge placed at a point while the 

displacement vector is measure by the displacement flux per unit area at that point. 

 

  ∭� �. ⃗⃗ܦ ௌ ⃗⃗⃗⃗ݏ݀  
 ݍ =

 

Or ܦ = 
 ܣݍ

 

 � = ܦ ⇒
 

Where � is the surface charge density. 

Relation between ⃗⃗ࡱ and ⃗⃗ࡰ   

We know that the Gauss law is given as- 

 

 ∬� �.⃗ ܧ ௦ ⃗⃗⃗⃗ݏ݀  = 
ߝݍ  

 

Where ߝ is the permittivity of the dielectric medium 

 =  ܧ⃗ ⇒
ͳߝ .  ܣݍ

 

But 
௤� =� = ܧ⃗ so we have ܦ ଵఌ �⇒ ܦ⃗⃗ �= ⃗⃗ܦ  ⃗ ܧߝ

⇒� �= ⃗⃗ܦ �׵  ܭ଴⃗⃗ߝ �ߝ =�  ܭ଴ߝ

Where ߝ଴ is the permittivity of the free space 

 Current: 
Current for study current ܫ� ݐݍ=  
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If the charge passing per unit time is not constant, then the current at any instant will be given as ܫ� ݐ݀ݍ݀=  

 

Current density:  
 =  ܬ 

⃗⃗ܽ݀ܫ݀ ⃗⃗   

�. ܬ = ܫ݀  ݀ܽ⃗⃗ ⃗⃗   

�∫ = ܫ  �. ܬ ݀ܽ⃗⃗ ⃗⃗ = ݐ݀ݍ݀   

From the above equation we can see that the current is the flux of current density as �� =� ∫� ⃗⃗ܽ݀ ⃗ ܧ ⃗⃗  

Its SI unit is  ܽ݉ݎ݁ݐ݁݉ݎܽ݁݌ଶ  
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Equation of continuity: 
The law of conservation of charge is called the equation of the continuity.  

�ܫ  =� ∬� �. ܬ ௦ ⃗⃗⃗⃗ݏ݀  

 

For steady current charge does not stay at any 

place, so the current will be constant for all the 

places.  

 

Figure(17): Flux of current ⇒ ܫ = ∬� �. ܬ ௦ ⃗⃗⃗⃗ݏ݀ =�  ݇  

By divergence theorem ⇒ ∬� �. ܬ ௦ ⃗⃗⃗⃗ݏ݀  = ∭� �. ܬ ݒ݅݀ ܸ݀�  
 

So ∭� �. ܬ ݒ݅݀ ܸ݀�  = ݇ 
 

On differentiating we get 

  Ͳ =  ܬ ݒ݅݀ 

This is the equation of continuity for study current. 

Now if current is not stationary i.e. if the current is the function of the time and  position  

then ܫ = ∬� �. ܬ ௦ ⃗⃗⃗⃗ݏ݀ =� ݐ݀ݍ݀−   

Here negative sign shows that the charge is reduced with respect to time. 

But if ߩ is the charge per unit volume then- 

�∭ = ݍ  �.ߩ ܸ݀�   

So ∬� �. ܬ ௦ ⃗⃗⃗⃗ݏ݀  = − ݐ݀݀  ∭� �.ߩ ܸ݀�   

⇒ ∭� �. ܬ ݒ݅݀ ܸ݀�  = − ݐ݀݀  ∭� �.ߩ ܸ݀�   
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⇒ ∭� + ܬ ݒ݅݀) �(ݐ݀ߩ݀ ܸ݀�  = Ͳ  

ݐ݀ߩ݀− =  ܬ ݒ݅݀ ⇒   

This is the equation of continuity for time varying current. Maxwell’s equations 

James Clerk Maxwell took a set of known experimental laws (Faraday's Law, Ampere's Law) and 

unified  them  into  a  symmetric  coherent  set  of  Equations  known  as  Maxwell's  Equations.  These 

equations  are  nothing  but  the  relation  between  electric  field  and  magnetic  field  in  terms  of 

divergence and curl. 

 

S.N. Name Integral form Differential form 

1 
Gauss’ Laǁ foƌ 

electricity 

∬� �.⃗ ܧ ௦ ⃗⃗⃗⃗ݏ݀ = ͳߝ଴  ∭� �ܸ݀ ߩ = ܧ⃗ ݒ݅݀   Ͳߝߩ

2 
Gauss’ laǁ foƌ 

magnetism 

∬� �.⃗ ܤ ௦ ⃗⃗⃗⃗ݏ݀ =� Ͳ ݀݅ܤ⃗ ݒ =� Ͳ 
3 

FaƌadaǇ’s Laǁ of 

induction 

∮� �.⃗ ܧ ݈݀⃗⃗  ⃗௖ = ݐ߲߲  ∬� �.⃗ ܤ ௦ ⃗⃗⃗⃗ݏ݀ �= ܧ⃗ ݈ݎݑܿ  ݐ߲ ܤ߲⃗⃗−  

4 Aŵpeƌe’s laǁ ∮� �.⃗ ܧ ݈݀⃗⃗  ⃗௖ =� ∬� ௙⃗⃗ܬ  ⃗.� ௦ ⃗⃗⃗⃗ݏ݀ + ݐ߲߲  ∬� �. ⃗⃗ܦ ௦ ⃗⃗⃗⃗ݏ݀ �= ܤ⃗ ݈ݎݑܿ   � ଴ߤ ቆܬ +� ଴ߝ ݐ߲ ܧ߲⃗ ቇ 

 

Maxwell’s first equation ȋGauss’ law in electric): 

Let us consider a volume ܸ which is enclosed in a surface ܵ, theŶ ďǇ Gauss’ laǁ the eleĐtƌiĐ fluǆ is 

given as 

 ∬� �.⃗ ܧ ௦ ⃗⃗⃗⃗ݏ݀  = 
ͳߝ଴ �                 ݍ …� …� …� …� …� …� …� …� …� … (1) 

Where ݍ is the totat charge enclosed in the volume ܸ 

Now if ߩ is the volume charge density then 

�∭ = ݍ  �ܸ݀ ߩ          …� …� …� …� …� …� …� …� …� … 
(2) 

 

By equation (1) and (2) 
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⇒ ∬� �.⃗ ܧ ௦ ⃗⃗⃗⃗ݏ݀  = 
ͳߝ଴  ∭� �ܸ݀ ߩ    

This is the iŶtegƌal foƌŵ of Maǆǁell’s eƋuatioŶ. 

BǇ Gauss’ diǀeƌgeŶĐe theoƌeŵ 

⇒ ∬� �.⃗ ܧ ௦  ⃗⃗⃗⃗ݏ݀  = ∭� �ܸ݀ ⃗ ܧ ݒ݅݀   

So by applying this on above equation we get 

⇒ ∭� �ܸ݀ ⃗ ܧ ݒ݅݀  = 
ͳߝ଴  ∭� �ܸ݀ ߩ   

⇒ ∭� ⃗ ܧ ݒ݅݀) − �(଴ߝߩ ܸ݀�  = Ͳ  

But ܸ݀� ≠� Ͳ so ⇒ ݀݅ܧ⃗ ݒ −   ଴ = Ͳߝߩ

 =  ܧ⃗ ݒ݅݀ ⇒
�׶]                                  ߩ =  ܦ⃗⃗ ݒ݅݀ ⇒  ߩ =  ܧ଴⃗ߝ ݒ݅݀ ⇒  ଴ߝߩ �= ⃗⃗ܦ    ܧ଴⃗ߝ

Maxwell’s second equation ȋGauss’ law in magnetismȌ: 

Since the magnetic lines of forces are closed curves so the magnetic flux entering any orbitri  

surface should be equal to leaving it 

mathematically ⇒ ∬� �.⃗ ܤ ௦ ⃗⃗⃗⃗ݏ݀  = Ͳ                               � …� …� …� …� …� …� …� …� …� …(1) 

This is iŶtegƌal foƌŵ of Maǆǁell’s seĐoŶd eƋuatioŶ. 

Noǁ ďǇ Gauss’ diǀeƌgeŶĐe theoƌeŵ ⇒ ∬� �.⃗ ܤ ௦  ⃗⃗⃗⃗ݏ݀  = ∭� �ܸ݀ ⃗ ܤ ݒ݅݀   

So equation (1) can be written as- 

⇒ ∭� �ܸ݀ ⃗ ܤ ݒ݅݀  = Ͳ  
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As ܸ݀� ≠� Ͳ so ⇒ ݀݅ܤ⃗ ݒ  = Ͳ  

Maxwell’s third equation ȋFaraday’s lawȌ: 

AĐĐoƌdiŶg to FaƌadaǇ’s laǁ of eleĐtƌoŵagŶetiĐ iŶduĐtioŶ if the ŵagŶetiĐ fluǆ liŶked ǁith a Đlosed 

circuit  changes  with  time  then  a ݂݁݉  is  induced  in  the  close  circuit  which  is  known  as  induced ݂݁݉ the direction of the induced ݂݁݉ will be such as it oppose the change in the magnetic flux. 

It is given as 

ݐ݀�݀− = ݁ ⇒                  …� …� …� …� …� …� …� …� …� … (1) 

But ďǇ Gauss’ theoƌeŵ ǁe kŶoǁ that 

⇒ � = ∬� ௦.⃗ ܤ  ݈݀⃗⃗  ⃗  

So ݁ = − ݐ߲߲ ∬� ௦⃗ ܤ    ⃗⃗⃗⃗ݏ݀ 

Now if ⃗ܧ  is the electric field produced due to the change in the magnetic flux then the induced ݂݁݉ will be equal to the line integral of ⃗ܧ  along the circuit. i.e. 

 ⇒ ݁ = ∮ �. ܧ⃗ ݈݀⃗⃗  ⃗௖                 …� …� …� …� …� …� …� …� …� …(2) 

 

By equation (1) and (2) 

 ⇒ ∮� �.⃗ ܧ ݈݀⃗⃗  ⃗௖  = − ݐ߲߲ ∬� ௦⃗ ܤ    ⃗⃗⃗⃗ݏ݀ 

⇒ ∮� �.⃗ ܧ ݈݀⃗⃗  ⃗௖  = −� ௦ݐ߲ ܤ߲⃗∬ �…       ⃗⃗⃗⃗ݏ݀  …� …� …� …� …� …� …� …� …(3) 

Noǁ Stokes’ theoƌeŵ 

⇒ ∮� �.⃗ ܧ ݈݀⃗⃗  ⃗௖  = ∬� �.⃗ ܧ ݈ݎݑܿ ௦ ⃗⃗⃗⃗ݏ݀   
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Applying this to the above equation, we get 

 ∬� �.⃗ ܧ ݈ݎݑܿ ௦ ⃗⃗⃗⃗ݏ݀  = −� ௦ݐ߲ ܤ߲⃗∬    ⃗⃗⃗⃗ݏ݀ 

⇒ ∬� ቆܿܧ ݈ݎݑ ⃗ + ݐ߲ ܤ߲⃗ ቇ� ௦ ⃗⃗⃗⃗ݏ݀  = Ͳ  

As ݀⃗⃗⃗⃗ݏ ≠� Ͳ 
So 

 
+ ܧ⃗ ݈ݎݑܿ ݐ߲ ܤ߲⃗  = Ͳ  

ݐ߲ ܤ߲⃗− =  ܧ⃗ ݈ݎݑܿ ⇒   

Maxwell’s fourth equation ȋMaxwell’s correction in Ampere’s lawȌ 

Aŵpeƌe’s Laǁ is giǀeŶ as 

   ܬ ଴ߤ =  ܤ⃗ ݈ݎݑܿ ⇒ 

This equation is true only for time independent electric field and to correct this equation for time 

varying field a term must be added ⇒ ܿߤ =  ܤ⃗ ݈ݎݑ଴( ܬ +� �…  (ௗ ܬ …� …� …� …� …� …� …� …� …    (1) 

Taking ݀݅݁ܿ݊݁݃ݎ݁ݒ of both side and for simplicity writing ܬ ௙௥௘௘  as ܬ  
�+ ܬ)ݒ݅݀ ଴ߤ = ( ܤ⃗ ݈ݎݑܿ) ݒ݅݀ ⇒    (ௗ ܬ

But divergence of curl of any quantity is always zero so ݀݅( ܤ⃗ ݈ݎݑܿ) ݒ� =� Ͳ 

 

Then ߤ଴ ݀݅ܬ)ݒ +� ௗ ܬ ݒ݅݀− =  ܬ ݒ݅݀ ⇒ ௗ) = Ͳ              ………………………………………. (2) ܬ            …� …� …� …� …� …� …� …� …� … (3) 

But by the equation of continuity ⇒ ݀݅ܬ ݒ  = − డఘడ௧            …� …� …� …� …� …� …� …� …� …      (4) 

AŶd ďǇ Maǆǁell’s fiƌst eƋuatioŶ 
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 =  ܧ⃗ ݒ݅݀ 
�…         ܧ⃗ ݒ݅݀ ଴ߝ = ߩ ⇒  ଴ߝߩ …� …� …� …� …� …� …� …� …     (5) 

By (4) and (5) ⇒ ݀݅ܬ ݒ  = − ݐ߲߲   ( ܧ⃗ ݒ݅݀ ଴ߝ) 

− =  ܬ ݒ݅݀ ⇒ ݐ߲߲ �…  ( ܦ⃗⃗ ݒ݅݀)  …� …� …� …� …� …� …� …� …  (6) 

Again by (3) and (6) 

ௗ ܬ ݒ݅݀− ⇒  = − ݐ߲߲   ( ܦ⃗⃗ ݒ݅݀) 

 = ௗ ܬ ݒ݅݀ ⇒
ݐ߲߲   ( ܦ⃗⃗ ݒ݅݀) 

�ݒ݅݀ = ௗ ܬ ݒ݅݀ ⇒ ݐ߲߲ )   ( ܦ⃗⃗ 

 = ௗ ܬ ⇒
ݐ߲ ܦ߲⃗⃗   

PuttiŶg this ǀalue iŶ Aŵpeƌe’s laǁ ǁe get ܿܤ⃗ ݈ݎݑ =� ଴ߤ  ቆܬ + ݐ߲ ܦ߲⃗⃗ ቇ 

This is Maǆǁell’s fouƌth eƋuatioŶ. 

For vacuum ⃗ܤ =� �ܦ and ܪ଴ߤ =�  ܧ଴ߝ

 

So 

 
଴ߤ =  ܪ⃗⃗ ݈ݎݑܿ ଴ߤ ቆܬ +� ଴ߝ ݐ߲ ܧ߲⃗ ቇ  

�+ ܬቆ =  ܪ⃗⃗ ݈ݎݑܿ ⇒ ଴ߝ ݐ߲ ܧ߲⃗ ቇ  
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