
NOORUL ISLAM COLLEGE OF ENGINEERING, KUMARACOIL

Department of Software Engineering

M. Sc. Software Engineering – Fifth Semester

XCS 355 – Design and Analysis of Algorithm

2 – Marks Question & Answer

1. What is performance measurement?
Performance measurement is concerned with obtaining the space and the time

requirements of a particular algorithm.

2. What is an algorithm?
An algorithm is a finite set of instructions that, if followed, accomplishes a

particular task. In addition, all algorithms must satisfy the following criteria:

1) input

2) Output

3) Definiteness

4) Finiteness

5) Effectiveness.

3. Define Program.
A program is the expression of an algorithm in a programming language.

Sometimes works such as procedure, function and subroutine are used synonymously

program.

4. Write the For LOOP general format.
 The general form of a for Loop is

For variable : = value 1 to value 2 step

Step do

{

<statement 1>

<statement n >

}

5. What is recursive algorithm?
 An algorithm is said to be recursive if the same algorithm is invoked in the body.

An algorithm that calls itself is Direct recursive. Algorithm A is said to be indeed recursive if

it calls another algorithm, which in turn calls A.

6. What is space complexity?
 The space complexity of an algorithm is the amount of memory it needs to run to

completion.

7. What is time complexity?
The time complexity of an algorithm is the amount of computer time it needs to

run to completion.

8. Give the two major phases of performance evaluation
 Performance evaluation can be loosely divided into two major phases:

(i) a prior estimates (performance analysis)

(ii) a Posterior testing(performance measurement)

9. Define input size.
The input size of any instance of a problem is defined to be the number of

words(or the number of elements) needed to describe that instance.

10. Define best-case step count.
The best-case step count is the minimum number of steps that can be executed for

the given parameters.

11. Define worst-case step count.
The worst-case step count is the maximum number of steps that can be executed

for the given parameters.

12. Define average step count.
The average step count is the average number of steps executed an instances with

the given parameters.

13. Define the asymptotic notation “Big on” (0)
The function f(n) = O(g(n)) iff there exist positive constants C and no such that

f(n)≤ C * g(n) for all n, n ≥n0.

14. Define the asymptotic notation “Omega” (ΩΩΩΩ).

The function f(n) =Ω (g(n)) iff there exist positive constant C and no such that

f(n) C * g(n) for all n, n ≥ n0.

15. Define the asymptotic t\notation “theta” (θθθθ)

The function f(n) =θ (g(n)) iff there exist positive constant C1, C2, and no such that

C1 g(n)≤ f(n) ≤ C2 g(n) for all n, n ≥ n0.

16. Define Little “oh”.
 The function f(n) = 0(g(n))

 iff

 Lim f(n) = 0

n - ∝ g(n)

17. Define Little Omega.

 The function f(n) = ω (g(n))

 iff

 Lim f(n) = 0

n - ∝ g(n)

18. Write algorithm using iterative function to fine sum of n numbers.
 Algorithm sum(a,n)

 { S : = 0.0

 For i=1 to n do

 S : - S + a[i];

 Return S;

 }

19. Write an algorithm using Recursive function to fine sum of n numbers,
Algorithm Rsum (a,n)

{

 If(n≤ 0) then

 Return 0.0;

 Else Return Rsum(a, n- 1) + a(n);

20. Define the divide an conquer method.
Given a function to compute on ‘n’ inputs the divide-and-comquer strategy

suggests splitting the inputs in to’k’ distinct susbsets, 1<k <n, yielding ‘k’ subproblems.

The subproblems must be solved, and then a method must be found to combine

subsolutions into a solution of the whole. If the subproblems are still relatively large, then

the divide-and conquer strategy can possibly be reapplied.

21. Define control abstraction.
A control abstraction we mean a procedure whose flow of control is clear but

whose primary operations are by other procedures whose precise meanings are left

undefined.

22. Write the Control abstraction for Divide-and conquer.

 Algorithm DAnd(ρ)

{

if small(p) then return S(ρ);

else

{

 divide P into smaller instance ρ 1, ρ 2, ρ k, k ≥ 1;

Apply D and C to each of these subproblems

Return combine (DAnd C(ρ1) DAnd C(ρ2),----, DAnd ((ρk));

}

}

23. What is the substitution method?
One of the methods for solving any such recurrence relation is called the

substitution method.

24. What is the binary search?
If ‘q’ is always chosen such that ‘aq’ is the middle element(that is, q=[(n+1)/2),

then the resulting search algorithm is known as binary search.

25. Give computing time for Bianry search?
In conclusion we are now able completely describe the computing time of binary

search by giving formulas that describe the best, average and worst cases.

Successful searches

θ(1) θ(logn) θ(Logn)

best average worst

unsuccessful searches

θ(logn)

best, average, worst

26. Define external path length?
The external path length E, is defines analogously as sum of the distance of all

external nodes from the root.

27. Define internal path length.
The internal path length ‘I’ is the sum of the distances of all internal nodes from

the root.

28. What is the maximum and minimum problem?
The problem is to find the maximum and minimum items in a set of ‘n’ elements. Though

this problem may look so simple as to be contrived, it allows us to demonstrate divide-

and-comquer in simple setting.

29. What is the Quick sort?
n quicksort, the division into subarrays is made so that the sorted subarrays do not

need to be merged later.

30. Write the Anlysis for the Quick sot.
In analyzing QUICKSORT, we can only make the number of element

comparisions c(n). It is easy to see that the frequency count of other operations is of the

same order as C(n).

31. Is insertion sort better than the merge sort?
Insertion sort works exceedingly fast on arrays of less then 16 elements, though for

large ‘n’ its computing time is O(n
2
).

32. Write a algorithm for straightforward maximum and minimum>
 algorithm straight MaxMin(a,n,max,min)

//set max to the maximum and min to the minimum of a[1:n]

{

max := min: = a[i];

for i = 2 to n do

{

if(a[i] >max) then max: = a[i];

if(a[i] >min) then min: = a[i];

}

}

33. Give the recurrence relation of divide-and-conquer?
 The recurrence relation is

T(n) = g(n)

 T(n1) + T(n2) + ----+ T(nk) + f(n)

34. Write the algorithm for Iterative binary search?
 Algorithm BinSearch(a,n,x)

//Given an array a[1:n] of elements in nondecreasing

// order, n>0, determine whether x is present

{

low : = 1;

high : = n;

while (low < high) do

{

mid : = [(low+high)/2];

if(x < a[mid]) then high:= mid-1;

else if (x >a[mid]) then low:=mid + 1;

else return mid;

}

return 0;

}

35. What are internal nodes?
 The circular node is called the internal nodes.

36. Describe the recurrence relation ofr merge sort?
If the time for the merging operation is proportional to n, then the computing time

of merge sort is described by the recurrence relation

 n = 1, a a constant

T(n) = a

 2T (n/2) + n n >1, c a constant

37.What is meant by feasible solution?
 Given n inputs and we are required to form a subset such that it satisfies some given

constraints then such a subset is called feasible solution.

38. Write any two characteristics of Greedy Algorithm?
 * To solve a problem in an optimal way construct the solution from given set of

candidates.

 * As the algorithm proceeds, two other sets get accumulated among this one set contains

the candidates that have been already considered and chosen while the other set contains the

candidates that have been considered but rejected.

 39. Define optimal solution?
 A feasible solution either maximizes or minimizes the given objective function is called

as optimal solution

40. What is Knapsack problem?
 A bag or sack is given capacity n and n objects are given. Each object has weight wi and

profit pi .Fraction of object is considered as xi (i.e) 0<=xi<=1 .If fraction is 1 then entire object is

put into sack. When we place this fraction into the sack we get wixi and pixi.

41. Define weighted tree.
 A directed binary tree for which each edge is labeled with a real number (weight) is called

as weighted tree.

42. What is the use of TVSP?
 In places where the loss exceeds the tolerance level boosters have to the placed. Given a

network and loss tolerance level the tree vertex splitting problems is to determine an optimal

placement of boosters.

43. What is the Greedy choice property?
 * The first component is greedy choice property (i.e.) a globally optimal solution can

arrive at by making a locally optimal choice.

 * The choice made by greedy algorithm depends on choices made so far but it cannot

depend on any future choices or on solution to the sub problem.

 * It progresses in top down fashion.

44. What is greedy method?
 Greedy method is the most important design technique, which makes a choice that looks

best at that moment. A given ‘n’ inputs are required us to obtain a subset that satisfies some

constraints that is the feasible solution. A greedy method suggests that one can device an

algorithm that works in stages considering one input at a time.

45. What are the steps required to develop a greedy algorithm?
 * Determine the optimal substructure of the problem.

 * Develop a recursive solution.

 * Prove that at any stage of recursion one of the optimal choices is greedy choice.

 Thus it is always safe to make greedy choice.

 * Show that all but one of the sub problems induced by having made the greedy

 choice are empty.

 * Develop a recursive algorithm and convert into iterative algorithm.

46. What is activity selection problem?
 The ‘n’ task will be given with starting time si and finishing time fi. Feasible Solution is

that the task should not overlap and optimal solution is that the task should be completed in

minimum number of machine set.

47. Write the specification of TVSP
 Let T= (V, E, W) be a weighted directed binary tree where

 V� vertex set

 E� edge set

 W� weight function for the edge.

 W is more commonly denoted as w (i,j) which is the weight of the edge <i,j> ε E.

48. Define forest.
 Collection of sub trees that are obtained when root node is eliminated is known as forest

49. .What does Job sequencing with deadlines mean?
 * Given a set of ‘n’ jobs each job ‘i’ has a deadline di such that di>=0 and a

 profit pi such that pi>=0.

 * For job ‘i’ profit pi is earned iff it is completed within deadline.

 * Processing the job on the machine is for 1unit of time. Only one machine is

 available.

50. Define post order traversal.
 The order in which the TVSP visits the nodes of the tree is called the post order traversal.

51. Write the formula to calculate delay and also write the condition in which the

node gets splitted?
 To calculate delay

 d(u)=max{d(v)+w(u, v)}

 v ε c(u)

 The condition in which the node gets splitted are:

 d(u)+w(u ,v)>δ and also d(u) is set to zero.

52. What is meant by tolerance level?
 The network can tolerate the losses only up to a certain limit tolerance limit.

53. When is a task said to be late in a schedule?

 A task is said to be late in any schedule if it finishes after its deadline else a task is early in

a schedule.

54. Define feasible solution for TVSP.
 Given a weighted tree T(V,E,W) and a tolerance limit δ any subset X of V is a

 feasible solution if d(T/X)<= δ.

55. Define optimal solution for TVSP.
 An optimal solution is one in which the number of nodes in X is minimized.

56. Write the general algorithm for Greedy method control abstraction.
 Algorithm Greedy (a, n)

 {

 solution=0;

 for i=1 to n do

 {

 x= select(a);

 if feasible(solution ,x) then

 solution=Union(solution ,x);

 }

 return solution;

 }

57. . Define optimal solution for Job sequencing with deadlines.
 Feasible solution with maximum profit is optimal solution for Job sequencing with

deadlines.

58.Write the difference between the Greedy method and Dynamic programming.

Greedy method Dynamic programming

1.Only one sequence of decision is

 generated.

1.Many number of decisions are

 generated.

2.It does not guarantee to give an

 optimal solution always.

2.It definitely gives an optimal

 solution always.

59.Define dynamic programming.
 Dynamic programming is an algorithm design method that can be used when a

solution to the problem is viewed as the result of sequence of decisions.

60.What are the features of dynamic programming?
� Optimal solutions to sub problems are retained so as to avoid recomputing their values.

� Decision sequences containing subsequences that are sub optimal are not considered.

� It definitely gives the optimal solution always.

61.What are the drawbacks of dynamic programming?
� Time and space requirements are high, since storage is needed for all level.

� Optimality should be checked at all levels.

62.Write the general procedure of dynamic programming.
 The development of dynamic programming algorithm can be broken into a

 sequence of 4 steps.

1. Characterize the structure of an optimal solution.

2. Recursively define the value of the optimal solution.

3. Compute the value of an optimal solution in the bottom-up fashion.

4. Construct an optimal solution from the computed information.

63.Define principle of optimality.
 It states that an optimal sequence of decisions has the property that whenever the initial

stage or decisions must constitute an optimal sequence with regard to stage resulting from the first

decision.

64.Give an example of dynamic programming and explain.
 An example of dynamic programming is knapsack problem. The solution to the knapsack

problem can be viewed as a result of sequence of decisions. We have to decide the value of xi for

1<i<n. First we make a decision on x1 and then on x2 and so on. An optimal sequence of decisions

maximizes the object function Σpi xi.

65.Write about optimal merge pattern problem.

 Two files x1 and x2 containing m & n records could be merged together to obtain one

merged file. When more than 2 files are to be merged together. The merge can be accomplished

by repeatedly merging the files in pairs. An optimal merge pattern tells which pair of files should

be merged at each step. An optimal sequence is a least cost sequence.

66.Explain any one method of finding the shortest path.
 One way of finding a shortest path from vertex i to j in a directed graph G is to decide

which vertex should be the second, which is the third, which is the fourth, and so on, until vertex j

is reached. An optimal sequence of decisions is one that results in a path of least length.

67.Define 0/1 knapsack problem.
 The solution to the knapsack problem can be viewed as a result of sequence of decisions.

We have to decide the value of xi. xi is restricted to have the value 0 or 1 and by using the function

knap(l, j, y) we can represent the problem as maximum Σpi xi subject to Σwi xi < y where l -

iteration, j - number of objects, y – capacity.

68.What is the formula to calculate optimal solution in 0/1 knapsack problem?
 The formula to calculate optimal solution is

 g0(m)=max{g1, g1(m-w1)+p1}.

69.Write about traveling salesperson problem.
 Let g = (V, E) be a directed. The tour of G is a directed simple cycle that includes every

vertex in V. The cost of a tour is the sum of the cost of the edges on the tour. The traveling

salesperson problem to find a tour of minimum cost.

70.Write some applications of traveling salesperson problem.
� Routing a postal van to pick up mail from boxes located at n different sites.

� Using a robot arm to tighten the nuts on some piece of machinery on an assembly line.

� Production environment in which several commodities are manufactured on the same

set of machines.

71.Give the time complexity and space complexity of traveling salesperson problem.
� Time complexity is O (n

2
 2

n
).

� Space complexity is O (n 2
n
).

72.Define flow shop scheduling.
 The processing of jobs requires the performance of several distinct job. In flow shop we

have n jobs each requiring n tasks i.e. T1i, T2i,…...Tmi, 1<i<n.

73.What are the conditions of flow shop scheduling?
� Let Tji denote jth task of the ith job. Task Tij is to be performed on Pj number of

processors where 1<j<m i.e. number of processors will be equal to number of task

� Any task Tji must be assigned to the processor Pj.

� No processor can have more than one task assigned to it at any time. For any job I

processing the task for j>1 cannot be started until T(j-i),i has been completed.

74.Define nonpreemptive schedule.
 A nonpreemptive schedule is a schedule in which the processing of a task on any

processor is not terminated until the task is complete.

75. Define preemptive schedule.
 A preemptive schedule is a schedule in which the processing of a task on any processor

can be terminated before the task is completed.

76.Define finish time
 The finish time fi (S) of job i is the time at which all tasks of job i have been completed in

schedule S.The finish time F(S) of schedule S is given by

 F(S)=max{ fi (S)}
1<i<n

77.Define mean flow time

The mean flow time MFT (S) is defined to be]

 MFT (S) = 1 Σfi(S)

 n
1<i<n

78.Define optimal finish time.
 Optimal finish time scheduling for a given set of tasks is a nonpreemptive schedule S for

which F (S) is minimum over all nonpreemptive schedules S.

79.Define preemptive optimal finish time.
 Preemptive optimal finish time scheduling for a given set of tasks is a preemptive schedule

S for which F (S) is minimum over all preemptive schedules S.

80. What are the requirements that are needed for performing Backtracking?
To solve any problem using backtracking, it requires that all the solutions satisfy a

complex set of constraints. They are:

i. Explicit constraints.

ii. Implicit constraints.

81.Define explicit constraint.
They are rules that restrict each xi to take on values only from a give set. They

depend on the particular instance I of the problem being solved. All tuples that satisfy the

explicit constraints define a possible solution space.

82. Define implicit constraint.
They are rules that determine which of the tuples in the solution space of I satisfy the

criteria function. It describes the way in which the xi must relate to each other.

83.Define state space tree.
The tree organization of the solution space is referred to as state space tree.

84.Define state space of the problem.
All the paths from the root of the organization tree to all the nodes is called as state

space of the problem

85.Define answer states.
Answer states are those solution states s for which the path from the root to s

defines a tuple that is a member of the set of solutions of the problem.

86.What are static trees?
The tree organizations that are independent of the problem instance being solved

are called as static tree.

87.What are dynamic trees?
The tree organizations those are independent of the problem instance being solved

are called as static tree.

88.Define a live node.
 A node which has been generated and all of whose children have not yet been

generated is called as a live node.

89. Define a E – node.
 E – node (or) node being expanded. Any live node whose children are currently

being generated is called as a E – node.

90.Define a dead node.
 Dead node is defined as a generated node, which is to be expanded further all of

whose children have been generated.

91.,What are the factors that influence the efficiency of the backtracking algorithm?
The efficiency of the backtracking algorithm depends on the following four

factors. They are:

i. The time needed to generate the next xk

ii. The number of xk satisfying the explicit constraints.

iii. The time for the bounding functions Bk

iv. The number of xk satisfying the Bk.

92.Define Branch-and-Bound method.
 The term Branch-and-Bound refers to all the state space methods in which all

children of the E-node are generated before any other live node can become the E- node.

93.What are the searching techniques that are commonly used in Branch-and-Bound

method.
The searching techniques that are commonly used in Branch-and-Bound method

are:

i. FIFO

ii. LIFO

iii. LC

iv. Heuristic search

94.State 8 – Queens problem.
 The problem is to place eight queens on a 8 x 8 chessboard so that no two queen

“attack” that is, so that no two of them are on the same row, column or on the diagonal.

95.State Sum of Subsets problem.
 Given n distinct positive numbers usually called as weights , the problem calls for finding

all the combinations of these numbers whose sums are m.

96. State m – colorability decision problem.
 Let G be a graph and m be a given positive integer. We want to discover whether the

nodes of G can be colored in such a way that no two adjacent nodes have the same color yet only

m colors are used.

97.Define chromatic number of the graph.
 The m – colorability optimization problem asks for the smallest integer m for which the

graph G can be colored. This integer is referred to as the chromatic number of the graph.

98. Define a planar graph.
 A graph is said to be planar iff it can be drawn in such a way that no two edges cross each

other.

 99. What are NP- hard and Np-complete problems?
 The problems whose solutions have computing times are bounded by polynomials of

small degree.

100. What is a decision problem?
 Any problem for which the answer is either zero or one is called decision problem.

101. What is maxclique problem?
 A maxclique problem is the optimization problrm that has to determine the size of a

largest clique in Grapg G where clique is the maximal subgraph of a graph.

102. what is approximate solution?
 A feasible solution with value close to the value of an optimal solution is called

approximate solution.

Noorul Islam College of Engineering

Department of Software Engineering

XCS – 355 Designs and Analysis of Algorithm

16 marks Question & Answer

1. Explain algorithm specification

a. Pseudo code conventions
1. Comments begin with // and continue until the end of line.

1. Blocks are indicated and matching braces.: { and }.

2. An identifier begins with a letter

3. Assignment of values to variables is done using the assignment statement

<variable> := <expression>

4. There are two Boolean values true and false

5. Elements of multi dimensional array are accessed using [and].

6. The following looping statements are employed: for, while and repeat – until.

7. A conditional statement has the following forms:

If <condition> then <statement>;

8. Input and output are done using the instructions read and write.

9. There only and one type of procedure: Algorithm

An algorithm consists of heading and body. The heading takes the form

Algorithm Name <parameter list>

b. Recursive algorithms
 An algorithm is said to be recursive if the same algorithm is invoked in the body.

An algorithm that calls itself is Direct recursive. Algorithm A is said to be indeed recursive if

it calls another algorithm, which in turn calls A.

2. Explain all asymptotic notations

Big oh
The function f(n) = O(g(n)) iff there exist positive constants C and no such that

f(n)≤ C * g(n) for all n, n ≥n0.

Omega

The function f(n) =Ω (g(n)) iff there exist positive constant C and no such that

f(n) C * g(n) for all n, n ≥ n0.

Theta

The function f(n) =θ (g(n)) iff there exist positive constant C1, C2, and no such that

C1 g(n)≤ f(n) ≤ C2 g(n) for all n, n ≥ n0.

Little oh
 The function f(n) = 0(g(n))

 iff

 Lim f(n) = 0

n - ∝ g(n)

Little Omega.

 The function f(n) = ω (g(n))

 iff

 Lim f(n) = 0

n - ∝ g(n)

3. Explain binary search method

If ‘q’ is always chosen such that ‘aq’ is the middle element(that is, q=[(n+1)/2),

then the resulting search algorithm is known as binary search.

Algorithm BinSearch(a,n,x)

//Given an array a[1:n] of elements in nondecreasing

// order, n>0, determine whether x is present

{

low : = 1;

high : = n;

while (low < high) do

{

mid : = [(low+high)/2];

if(x < a[mid]) then high:= mid-1;

else if (x >a[mid]) then low:=mid + 1;

else return mid;

}

return 0;

}

In conclusion we are now able completely describe the computing time of binary

search by giving formulas that describe the best, average and worst cases.

Successful searches

θ(1) θ(logn) θ(Logn)

best average worst

unsuccessful searches

θ(logn)

best, average, worst

4. Explain the concepts of quick sort method and analyze its complexity

 n quicksort, the division into subarrays is made so that the sorted

subarrays do not need to be merged later.

Algorithm partition(a,m,p)
{

v:=a[m];

I:=m;

J:=p;

Repeat

{

repeat

I:=I+1;

Until(a[I]>=v);

Repeat

J:=j-1;

Until(a[j]<=v);

If(I<j) then interchange(a,I,j);

}until(I>=j);

a[m]:=a[j];

a[j]:=v;

return j;

}

Algorithm interchange(a,I,j)
{

p:=a[I];

a[I]:=a[j];

a[j]:=p;

}

Algorithm quichsort(p,q)
{

if(p<q) then

{

j:= partition(a,p,q+1);

quicksort(p,j-1);

quicksort(j+1,q);

}

}

In analyzing QUICKSORT, we can only make the number of element

comparisions c(n). It is easy to see that the frequency count of other operations is of the

same order as C(n).

5. Write the algorithm for finding the maximum and minimum and explain it.

The problem is to find the maximum and minimum items in a set of ‘n’ elements.

Though this problem may look so simple as to be contrived, it allows us to demonstrate

divide-and-comquer in simple setting.

Algorithm straight MaxMin(a,n,max,min)

//set max to the maximum and min to the minimum of a[1:n]

{

max := min: = a[i];

for i = 2 to n do

{

if(a[i] >max) then max: = a[i];

if(a[i] >min) then min: = a[i];

}

}

Algorithm maxmin(I,j,max,min)

{
if(I = j) then max := min:=a[I];

else if(I=j-1) then

{

if(a[I]<a[j]) then

{

max := a[j];min := a[I];

}

else

{

max:=a[I];

min := a[j];

}}

else

{

mid := [(I+j)/2];

maxmin(I,mid,max,min);

maxmin(mid+1,j,max1,min1);

if(max<max1) then max := max1;

if(min>min1) then min:=min1;

}}

6. Explain the concept of merge sort

In merge sort, the elements are to be sorted in non-decreasing order. Given a sequence of n

elements i.e. a [1], a [2]…. a [n], the general idea is to imagine them split into 2 sets a [1], …a

[(n/2)] and a [(n/2) +1], …. a [n].Each set is individually sorted, and the resulting sorted sequence

are merge to produce a single sorted sequence of ‘n’elements. The time complexity is O (nlogn)

for worst case.

Insertion sort works exceedingly fast on arrays of less then 16 elements, though for

large ‘n’ its computing time is O(n
2
).

If the time for the merging operation is proportional to n, then the computing time

of merge sort is described by the recurrence relation

 n = 1, a a constant

T(n) = a

 2T (n/2) + n n >1, c a constant

 Given a sequence of elements a[1],, a[n]. The general idea is to imagine them split in

to 2 sets a[1],, a[n/2] and a[n/2 + 1],, a[n] each sets are individually sorted and the

resulting sorted sequence are merged to produce a single sorted sequence of n elements.

 Algorithm Mergesort(low, high)

 {

 if (low<high) then

 { mid := (low+high)/2;

 mergesort(low, mid);

 mergesort(mid+1, high);

 merge(low,mid,high)

 }

 }

 Merge Algorithm

 Algorithm Merge(low, mid, high)

 { h=high, i=low, j=mid+1;

 while((h<=mid) and (j<=high)) do

 { if (a[h]<=a[j]) then

 { b[i]=a[h]

 h = h + 1;

 }else{

 b[i]=a[j], j=j+1;

 }

 i=i+1;

 }

 if (h>mid) then

 for k=j to high do

 { b[i]=a[k]; i=i+1; }

 else

 for k=hto mid do

 { b[i]=a[k]; i=i+1;}

 for k=low to high do

 a[k] = b[k]

 }

7. Explain multi stage graphs

A multistage graph G = (V,E) is a directed graph in which the vertices are partitioned into

k>=2 disjoint sets Vi. The multistage graph problem is to find a minimum cost path from s to t.

 Graph:-

 Using the forward approach we obtain

 Cost(i,j) = min{c(j,l)+cost(i+1,l)}

 Algorithm Fgraph(G,k,n,p)

{

 cost[n] := 0.0;

for j := n-1 to 1 step –1 do

{

Let r be a vertex such that <j,r> is an edge of G and c[j,r] + cost[r] is minimum;

Cost[j]:= c[j,r]+cost[r];

d[j]:= r;

}

p[1]:= 1;

p[k]:=n;

for j:= 2 to k-1 do

p[j]:=d[p[j-1]];

}

From the backward approach we obtain

 Bcost(i,j) = min{bcost(i-1,l)+c(l,j)}

Algorithm Bgraph(G,k,n,p)

{

bcost[1]:= 0.0;

for j := 2 to n do

{

 Let r be such that <r,j> is an edge of G and bcost[r]+c[r,j] is minimum;

Bcost[j]:=bcost[r]+c[r,j];

D[j]:=r;

}

p[1]:= 1;

p[k]:= n;

for j := k-1 to 2 do

p[j]:= d[p[j+1]];

}

8. Explain the concepts of job sequencing with deadlines.

 Let j be a set of k jobs and ∑ = i1, i2, ik a permutation of jobs in j such that di1 <= di2 <

... dik. Then j is a feasible solution iff the jobs in j can be processed in the order without violating

any deadlines.

 * Given a set of ‘n’ jobs each job ‘i’ has a deadline di such that di>=0 and a

 profit pi such that pi>=0.

 * For job ‘i’ profit pi is earned iff it is completed within deadline.

 * Processing the job on the machine is for 1unit of time. Only one machine is

 available.

 Example:-
 Let n = 4 (p1,p2,p3,p4) = (100,10,15,27) and (d1,d2,d3,d4) = (2,1,2,1). The feasible

solutions and their values are:

 Feasible soln. Processing sequence value

 1. (1,2) 2,1 110

 2. (1,3) 3,1 115

 3. (1,4) 4,1 127

 4. (2,3) 3,2 25

 5. (3,4) 4,3 42

 6. (1) 1 100

 7. (2) 2 10

 8. (3) 3 15

 9. (4) 4 27

 Solution 3 is optimal.

Algorithm JS(d,j,n)

{

d[0]:=j[0]:=0;

j[1]:=1;

k:=1;

for k:= 2 to n do

{

r:= k;

while((d[j[r]]>=d[I]) and (d[j[r]]<>r)) do

r:=r-1;

if((d[j[r]]<=d[I])and (d[I]>r)) then

{

for q:=k to r+ 1 step –1 do

j[q+1] := j[q];

j[r+1]:=I;

k:=k+1;

}

}

return k;

}

For job sequence there are two possible parameters in terms of which its complexity can

be measured. We can use n the number of jobs, and s, the number of jobs included in the solution

j. If we consider the job set pi = di = n – I + 1, 1 <= I <= n, the algorithm takes φ(n
2
) time to

determine j. Hence the worst case computing time for job sequence is φ(n
2
)

9. Insertion and Deletion of a Binary Search Tree.
 To insert a new element x, we must first verify that its key is different from those of

existing elements. To do this, a search is carried out. If the search is unsuccessful, then the

element is inserted at the point the search terminated. To insert an element with key 80 into the

tree. First we search the element 80 is present in the tree. This search terminates unsuccessfully,

and the last node examined is the one with key 40. The new element is inserted as the right child

of this node.

Algorithm Insert(x)

{

 found := false;

 p := tree;

 while ((p≠0) and not found) do

 {

 q := p;

 if (x = (p � data)) then found := true

 else if (x < (p � data)) then p := p � lchild;

 else p := p � rchild;

 }

 if (not found) then

 {

 p := new treenode;

 p � lchild :=; p � rchild := 0; p � data := x;

 if (tree ≠ 0) then

 {

 if (x < (q � data)) then q � lchild := p;

 else q � rchild := p;

 }

 else tree := p;

 }

}

b) Deletion from a binary tree.

 To delete an element from the tree, the left child of its parent is set to 0 and the node

disposed. To delete the 80 from this tree, the right child field of 40 is set to 0. Then the node

containing 80 is disposed. The deletion of a nonleaf element that has only one child is also easy.

The node containing the element to be deleted is disposed, and the single child takes the place of

the disposed node. To delete another element from the tree, simply change the pointer from the

parent node to the single child node.

10. Show that DFS and BFS visit all vertices in a connected graph G reachable from any one

of vertices.

 In the breadth first search we start at a vertex v and mark it as having been reached. The

vertex v is at this time said to be unexplored. A vertex is said to have been explored by an

algorithm when the algorithm has visited all vertices adjacent from it. All unvisited vertices

adjacent from v are visited next. These are new unexplored vertices. Vertex v has now been

explored. The newly visited vertices haven’t been explored and are put onto the end of a list of

unexplored vertices. The first vertex on this list is the next to be explored. Exploration continues

until no unexplored vertex is left.

Breadth first search

 We start at a vertex V and mark it as have been reached. The vertex v is at this

time said to be unexplorted. All visited vertices adjacent from v are visited next.

 If G is represented by its adjacent then the time is O(n2).

 Algorithm BFS(v)

 {

 u := v;

 visited[v] := 1;

 repeat

 {

 for all vertices w adjacent from u do

 {

 if (visited[w] = 0) then

 {

 add w to q;

 visited[w] := 1;

 }

 }

 if q is empty then return;

 delet u from q;

 } until (false)

 }

 A depth first search of a graph differs from a breadth first search in that the exploration

of a vertex v is suspended as soon as a new vertex is reached.

At this time the exploration of the new vertex u begins. When the new vertex has been explored,

the exploration of v continues.

Depth first search

 The exploration of a vertex V is suspended as soon as a new vertex is reached.

 Algorithm DFS(v)

 Algoithm DFS(v)

 {

 visited[v]:=1;

 for each vertex q adjacent from v do

 {

 if (visited[w] =0) then DFS(w);

 }

 }

11. Explain the concepts of traveling salesperson problem.

 Let G = (V,E) be a directed graph with edge costs cij. The variable cij is defined such

that cij > 0 for all I and j and cij = ∞ if <ij> ∉ E.Let |V| = n and assume n > 1. A tour of G is a

directed simple cycle that includes every vertex in V. The cost of a tour is the sum of the cost of

the edges on the tour. The traveling salesperson problem is to find a tour of minimum cost.

 Let G=(V,E) be a directed graph defining an instance of the traveling salesperson problem.

Let Cij equal the cost of edge (i,j) cij = 0 if (i,j)≠ E, and let |v| = n. The solution space s is given

by s = {1, ∏, 1) is a permutation of (2,3,...,n)

 Let us now trace the progress of the LCBB algorithm on the problem instance. The portion

of the state space tree that gets generated. Matrix is obtained from that and setting all entries in

row 1 and column 3. All exercise examine the implementation considerations for the LCBB

algorithm. A possible organization for the state space is a binary tree in which a left branch

represents the exclution of that edge.

 The principle of optimality is

 G{1,V-{1}) = min{c1k+g(k,V-{1,k})}

 Generalising

 G(I,S) = min{cij+g(j,S-{j})}

 0 10 15 20

 5 0 9 10

 6 13 0 12

 8 8 9 0

 FIG: Directed graph and edge length matrix c

g(1,{2,3,4}) = min{c12+g(2,{3,4}),c13+g(3,{2,4}),c14+g(4,{2,3}))

 = min{35,40,43}

 = 35

1 2

4
3

12. Explain all the techniques for binary trees

 When the search necessarily involves the examination of every vertex in the object being

searched it is called a traversal. There are many operations that we want to perform on binary

trees. If we let L,D and R stand for moving left printing the data and moving right when at a node

then there are six possible combinations of traversal: LDR,LRD,DLR,DRL,RDL and RLD. If we

adopt the convention that we traverse left before right then only three traversals remain:

LDR,LRD and DLR. To these we assign the names inorder, postorder and preorder.

Algorithm inorder(t)

 {

 if t ≠ 0 then

 {

 inorder(t -> lchild);

visit(t);

inorder(t -> rchild);

}

}

Algorithm preorder(t)

 {

 if t ≠ 0 then

 {

 visit(t);

preorder(t -> lchild);

preorder(t -> rchild);

}

}

Algorithm postorder(t)

 {

 if t ≠ 0 then

 {

 postorder(t -> lchild);

postorder(t -> rchild);

 visit(t);

}

}

13. Write the Bellman and ford algorithm, and explain its concepts (10)

The recurrence for dist is given

 dist
k
[u] = min{dist

k-1
[u],mini{dist

k-1
[i]+cost[i,u]}}

 Graph:-

Algorithm BellmanFord(v,cost,dist,n)

{

for I:= 1 to n do

dist[I] := cost[v,I];

for k:= 2 to n-1 do

for each u such that u ≠v and u has at least one incoming edge do

for each <I,u> in the graph do

if dist[u]> dist[I]+cost[I,u] then

dist[u] := dist[I]+cost[I,u];

}

 The overall complexity is O(n
3
) when adjacency matrices are used and O(ne) when

adjacency lists are used.

14. Discuss the concepts of 8 – queens problem

The problem is to place eight queens on a 8 x 8 chessboard so that no two

 queen “attack” that is, so that no two of them are on the same row, column or on the

 diagonal.

One solution to the 8 queen problem

Algorithm place(k,I)

{

 for j := 1 to k-1 do

 if(x[j]=I) or(abs(x[j]-I)=abs(j-k))) then return false;

return true;

}

Algorithm Nqueens(k,n)

{

for I:= 1 to n do

{

if(place(k,I) then

{

x[k]:= I;

if(k=n) then write(x[1:n]);

 Q

 Q

 Q

 Q

 Q

Q

 Q

 Q

else

Nqueens(k+1,n) } } }

15. Graph Coloring Techniques
 Let G be a graph and m be a positive integer. The nodes of G can be colored in

such a way that no two adjacent nodes have the same color yet only m colors are used.

This is termed by m-color ability decision problem and given it is the degree of the queen

graph, then it can be colored with j + 1 colors. The m – color ability optimization problem

asks for the smallest integer m for which the graph G can be colored.

 In the fig the graph can be colored with three colors 1, 2 and 3. The color of each

node is indicated next to it. It can also be seen that three colors are needed to color this

graph and hence this graphs chromatic number is 3.

 Suppose we represent a graph by its adjascency matrix G[1:n, 1:n], where G[I, j] =

1; if [I, j] is an edge of G and G[I, j] = 0, otherwise the colors are represented by the

integer 1, 2, 3, …., n and solution are given by the n tupile.

(x1, x2, …., xn) where xi is the color of node is 1.

Algorithm mcoloring(k)

{

 repeat

 {

 if (x[k] = 0) then return;

 if (k = n) then write (x[1: n]);

 else mcoloring(k+1);

 } until (false);

}

16. Write and explain the concepts of 0/1 knapsack problem.

b

a e

c
d

A bag or sack is given capacity n and n objects are given. Each object has weight

wi and profit pi .Fraction of object is considered as xi (i.e) 0<=xi<=1 .If fraction is 1 then

entire object is put into sack. When we place this fraction into the sack we get wixi and pixi.

The solution to the knapsack problem can be viewed as a result of sequence of

decisions. We have to decide the value of xi. xi is restricted to have the value 0 or 1 and by

using the function knap(l, j, y) we can represent the problem as

maximum Σpi xi

subject to Σwi xi < y

where l - iteration, j - number of objects, y – capacity

The formula to calculate optimal solution is

 g0(m)=max{g1, g1(m-w1)+p1}.

Algorithm BKnap(k, cp, cw)

{

 if (cw + w[k] <= m) then

 {

 y[k] := 1;

 if (k < n) then BKnap(k+1, cp + p[k], cw + w[k]);

 if ((cp + p[k] > fp) and (k = n)) then

 {

 fp := cp + p[k]; fw := cw + w[k];

 for j := 1 to k do

 x[j] := y[j];

 }

 }

 if (bound (cp, cw, k) >= fp) then

 {

 y[k] := 0;

 if (k<n) then BKnap(k+1, cp, cw)

 if ((cp> fp) and (k = n) then

 {

 fp := cp; fw := cw;

 for j := 1 to k do

 x[j] := y[j];

 }}}

17. Write and explain the techniques in branch and bound method

The searching techniques that are commonly used in Branch-and-Bound

 method are:

v. FIFO

vi. LIFO

vii. LC

viii. Heuristic search

Control Abstraction for LC – Search

 In both LIFO and FIFO branch and bound the selection rule for the next E – node is rather

rigid and in a sence blind. The selection rule for the next E – nod edoes not give any preference to

a node that has a very good chance of getting the search to an answer not quickly.

 The search for an answer node can often be speeded by using an intelligent ranking

function for live node. The next E – node is selected on the basis of ranking function.

 Let t be a state space tree and c() a cost function for the nodes in t. If x is a node in t, then

c(x) is the minimum cost of any answer node in the subtree with root x. c(t) is the cost of a

minimum – cost answer in tree t. As remarked earlier, it is usually not possible to find an easily

computable function c(). The heuristic search should be easy to compute and generally has the

property that if x is either an answer node or a leaf node, then c(x) = C(x).

 Listnode = record{

 Listnode * next, *parent;

 Float coast;

Algorithm LCSearch(t)

{

 if *t is an answer node then output *t and return;

 E := t;

 Initialize the list of live nodes to be empty;

 Repeat

 {

 for each child x of E do

 {

 if x is an answer node than output the path from x to t and return

 add(x);

 x � parent := E;

 }

 if there are no more live nodes then

 {

 write (“No answer node”);

 return;

 }

 E := Least();

 }until(false);

}

18. Non deterministic Algorithm
 Algorithm has the property that the result of every operation whose outcome are not

uniquely defined. The machine executing such operation is allowed to choose any one of these

outcomes. To specify such algorithms, introduce three new functions.

� Choice (s) – Choose any one of the element of the set s.

� Failure () – Signals an unsuccessful completion

� Success () – Signals a successful completion.

 The assignment statement x: = choice(1, n) could result in x being assigned any one of the

integer in the range[1, n]. The failure() and Success() signals are used to define a computation of

the algorithm. The set of choices that leads to a successful completion, then one such set of choice

is always made and the algorithm terminates successfully.

 Consider the problem of searching for an element x in a set of elements A[1, n] where n>=

1.

Step 1: J: = choice (1, n);

Step 2: If A[j] = x then

 Write (j);

 Success();

Step 3: (A[j] != x)

 Write(0);

 Failure();

19. NP – hard Graph Problems
1. Pick a problem L1 already known to be NP – hard.

2. Show how to obtain an instance I’ of L2 from any Instance I of L1, Such that from

the solution of I’ we can determine the solution to instance I of L1.

3. Conclude from step 2 that L1 α L2.

4. From step1 and step 3, the transitivity of α that L2 is NP – hard

a) Clique Decision Problem (CDP)

 A maximal complete sub graph of a graph G = (V, E) is a clique. The size of the clique is

the number of vertices in it. The Max clique problem is an optimization problem that has to

determine the size of a largest clique in G. The corresponding decision problem is to determine

wheather G has a clique of size k for some k.

 The Input to the max clique decision problem can be provided as a sequence of edged and

an integer k. Each edge in E(G) is a pair of numbers(I, j). The size of the input for each edge(I, j)

is log I 2 + log j 2 + 2. if a binary representation is assumed. The input size of any instance is

b) Node Cover Decision problem

 A set V is a node cover for a graph G = (V, E) iff all edges in E are incident to atleast one

vertex in s. The size [s] of the cover is the number of vertices in s.

c) Chromatic Number Decision Problem. (CNDP)

 A coloring of a graph G = (V, E) is a function f:� {1, 2, ….., k} defined for all x € v. If

(V, E) € E, then f(u) ≠ f(v).

d) NP – hard scheduling problem

 This problem requires us to decided whether a given multiset A = {a1, a2, a3, ….., an) of

n positive integer has a partition p. such that

e) Job shop scheduling.

 A job shop like a flow shop has m different processors. The n job to be scheduled require

the completion of several task. The time of the j
th

 task for job ji. The task for any job ji are to be

carried out in the order 1, 2, 3, ….. and so on

20. Approximation & εεεε - Approximation Algorithms

• A is an absolute approximation algorithm for problem p iff for every instance I of p.

kIfIf ≤−)()(*
)

 for some constant k.

• A is an f(n) approximate algorithm iff for every instance I of size n,

)()()(* nfIfIf ≤−
)

for p*(I) > 0.

• An ε - Approximation algorithm is an f(n) approximate algorithm for which f(n) <= ε
for some constant e.

• A(e) is an approximation scheme iff for every given ε > 0 and problem instance I, A(e)

generate α feasible solution such that e
If

IfIf
≤

−

)(*

)()(*
)

where f*(I) > 0.

• An approximation scheme is a polynomial time approximation scheme iff for every

fixed e > 0 it has a computing time ie, a polynomial in the problem size.

• An approximation scheme whose computing time is a polynomial both in the problem

size s in 1/e is a fully polynomial time approximation scheme.

Maximum program stored problem

 Assume we have n programs and two storage device. let li be the amount of

storage needed to store the i
th

 program. Let L be the storage capacity of each disk.

Determine the maximum number of these n programs that can be stored on two desk is NP

– hard

i) Partition of maximum program

ii) Let I be any instance of the maximum programs stored problem. Let f*(I) be the

maximum number of programs that can be stored on two desks each of length L.

iii) Let)(If
)

 be the number of programs stored using the function Pstore, then

1)()(
* ≤− IfIf

)

Algorithm Pstore(l,n)

{

 I = 1;

 for j := 1 to 2 do

 {

 sum := 0;

 while (sum + l(i)) <= L do

 {

 write (“Store Program”);

 sum := sum + l[i];

 i := i + 1;

 if i > n then return;

 }

 }

}

 Simple heuristics are

• first fit (ff)

• Best fit (bf)

• First fit decreasing (ffd)

• Best fit decreasing (bfd)

