MCIT-101

M. E./M. Tech. (First Semester)

EXAMINATION, June, 2012

(Grading/Non-Grading)

MATHEMATICAL FOUNDATIONS FOR IT

(MCIT-101)

Time: Three Hours

 $Maximuni\ Marks: \left\{ egin{array}{l} GS:70 \\ NGS:100 \end{array}
ight.$

Note: Attempt any five questions. All questions carry equal marks.

- 1. (a) A source emits an independent sequence of symbols from an alphabet consisting of five symbols A, B, C, D and E with symbol probability $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{16}$ respectively. Find the entropy of the source.
 - (b) In a message conveyed through long sequence of dots and dashes, the probability of occurrence of dash is one third of that of a dot. Calculate the information.
- 2. (a) The generator material for a (6, 3) block code is given. Find all code vectors of this code:

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}.$$

- (b) The generator polynomial of a (7, 4) cyclic code is $g(x) = 1 + x + x^2$. Find all the code words of this code.
- 3. (a) If $X = \{x, y, z, +\}$ be universal set and :

$$A = \{(x, 0.4), (y, 0.6), (z, 0.2), (+, 0)\}$$
 and $B = \{(x, 0.7), (y, 0), (z, 0.4), (+, 0.3)\}$

are two fuzzy subsets of X, find $A \cup B$.

- (b) Define all standard operations on a fuzzy set.
- 4. (a) Write short notes on the following:
 - (i) Discrete Fourier transform
 - (ii) Fast Fourier transform.
- (b) Solve the initial value problem:

$$\frac{dy}{dx} = \frac{y - x}{y + x}, \quad y(0) = 1$$

for x = 0.1 by Euler's method.

5. (a) Apply the fourth order Runge-Kutta method to solve:

$$\frac{dy}{dx} = x^2 + y^2$$
, $y(0) = 1$

taking step size h = 0.1 and determine approximations to y(0.1) and y(0.2), correct to four decimal places.

(b) Write a note on Wavelet Transform and its applications.

- 6. (a) A fair coin is tossed four times. Find the probability that they are all heads if the first two tosses results in head.
 - (b) Find the mean and variance of the binomial distribution.
- 7. (a) Find the probability that at most 5 defective diodes will be found in a pack of 600 diodes, if previous data shows that 3% of such diodes are defective.
 - (b) State and prove Baye's theorem for probability.
- (a) Define the following ;
 - (i) Hamming Codes
 - (ii) Block Codes.
 - (b) A problem in mathematics is given to three students, whose chances of solving the problem are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$. What is the probability that the problem is solved?