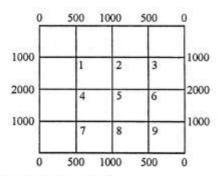
MCSE-101

M. E./M. Tech. (First Semester) EXAMINATION, July/August, 2008

(Computer Science & Engg. Branch)

ADVANCED COMPUTATIONAL MATHEMATICS


(MCSE-101)

Sime : Three Hours

Maximum Marks : 100 Minimum Pass Marks : 40

Note: Attempt any five questions. All questions carry equal marks.

- 1. (a) A bar of 30 cm length has its ends kept at 20° and 80° respectively until steady state conditions prevail. The temperature at each ends is then suddenly reduced to 0° and maintained thereafter using separation of variables method. Find the temperature in bar.
 - (b) State and explain Parseval's theorem for Fourier transform.
 - (c) Explain the following in relation to DFT:
 - (i) Time sharing
 - (ii) Aliasing error.
 - (d) Explain WFT.
- 2. (a) Determine all mesh points if it satisfies Laplace equation in the grid with given boundary conditions:

iterate by Gauss-Seidel method.

- (b) Explain mother wavelet and give application of wavelet transform.
- (c) Define Haar transform and where it is used in computer science?
- (a) Define stochastic process and explain classification of stochastic process.
 - (b) Define the Markov property for a discrete space continuous time process. Prove that a process having independent and stationary increments is Markov.

- (a) Explain the difference between open queue network and closed queue network.
 - (b) Obtain the distribution of the number in the system in steady state for M/M/S model by considering it as birth and death process.
- 5. (a) Box A contains 4 red and 3 white marbles and box B contains 2 red; and 6 white marbles. If a marble is drawn from each box, what is the probability that they are both of the same colour?
 - (b) Find the mean and variance of Binomial distribution.
- 6. (a) Define fuzzy relations. Discuss fuzzy rules with some examples.
 - (b) Write a note on fuzzy reasoning.
 - (c) Let A and B be two fuzzy subsets of U and V respectively. Let R be the Catesian product of A and B. Is the projection of R on U identical to A? If so, prove it. If not, give a counter example.
- 7. (a) Explain line space and log space functions in MATLAB.
 - (b) Write mathematical operators used on scalar quantities.
 - (c) Write a MATLAB program using a for loop to compute the factorial.
 - (d) What is the use of modular mathematics?
- 8. (a) Prove that if W_1 and W_2 are two vector subspaces of a vector space V(F), then $W_1 \cap W_2$ is also a vector subspace of V(F).
 - (b) Let F be the field of complex numbers and let T be a function from F³ into R³ defined by:

$$T(x_1,\,x_2,\,x_3)=(x_1-x_2+2x_3,\,2x_1+x_2-x_3,\,-x_1-2x_2)$$

Verify that T is a linear transformation.

(c) Define Hermite polynomial and write its differential equation.