MCSE/MSE-101

M. E./M. Tech. (First Semester) EXAMINATION, Dec., 2010

ADVANCED COMPUTATIONAL MATHEMATICS

Time: Three Hours

Maximum Marks : 100 Minimum Pass Marks : 40

Note: Attempt any five questions. All questions carry equal marks.

- 1. (a) Show that the vectors (1, 2, 0), (0, 3, 0) and (-1, 0, 1) are linearly dependent in the vectors space V_3 of real numbers \mathbf{R} .
 - (b) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by :

$$T(x, y) = \{-x + 2y, y, -3x + 3y\}.$$

Find the matrix representation of T with respect to the base $A = \{(1, 2), (-2, 1)\}$ and $B = \{(-1, 0, 2), (1, 2, 3), (1, -1, -1)\}$ of \mathbb{R}^2 and \mathbb{R}^3 respectively.

2. (a) Give Mathematical formula for $\{He_n(x)\}\$ [Hermite polynomial] and show that:

$$He_3(x) = x^3 - 3x.$$

Also write weight function for Hermite polynomial to be orthogonal.

(b) A string is stretched and fastended to two points l apart. Motion started by displacing the string in the form $y = a \sin \frac{\pi x}{l}$ from which is released at time t = 0. Show that the displacement of any point at distance x from one end at time t is given by:

$$y(x,t) = a \sin \frac{\pi x}{l} \cos \frac{\pi ct}{l}.$$

- 3. (a) Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial u^2}$ subject to initial condition $u = \sin \pi x$ at t = 0 f $0 \le x \le 1$ and u = 0 at x = 0 and x = 1 for t > 0, by the Gauss-Seid iterative method.
 - (b) Write the properties of DFT, WFT and Haar transform.

4. (a) Solve Laplace's equation for the following figure :

The boundary values being as indicated:

- (b) A can hit a target 4 times in 5 shots; B 3 times in 4 shots; C twice in 3 shots. They fire a volley. What is the probability that at least two shots hit?
- 5. (a) Fit a Poisson distribution to the following and calculate theoretical frequencies:

x	:	0	1	2	3	4
f	:	122	60	15	2	1

- (b) Write short notes on the following:
 - (i) Concept of estimation theory
 - (ii) Theory of hypotheses.
- **6.** (a) Show that every stochastic process $\{x_t, t = 0, 1, 2, ...\}$ with independent increment is a Markov process.
 - (b) Obtain the distribution of the number in the system in steady state for (M/M/1 : ∞/FCFS) model by considering it as birth and death process.
- 7. (a) Customers arrive at a one man barber shop according to Poisson process with a mean interarrival time of 12 minutes. Customer spend an average of 10 min, in the barber's shop:
 - (i) What is the expected number of customers in the barber shop and in the queue ?
 - (ii) How much time can a customer expert to spend in the barber's shop?
 - (iii) What is the average time customer spends in the queue ?
 - (b) What are fuzzy sets? Describe the importance of fuzzy sets. Compare it with classical sets.
- 8. (a) Write five transfer functions and their MATLAB functions.
 - (b) Define Heaviside's unit function and error function and where they are used.