7. ≈ RGPVONLINE.COM

- 6. a) A supermarket has a single cashier. During the peak hours customers arrive at a rate of 20 customers per hour. The average number of customer that can be processed by the cashier is 24 per hours calculate the following:
 - i) Probability that the cashier is idle.
 - ii) Average number of customer in the queuing system.
 - iii) Queue size.
 - iv) Average time a customer spends in the system.
 - b) In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution.
- a) Let A and B be two fuzzy sets defined on a universal set X prove that: |A| + |B| = |A ∪ B| + |A ∩ B|.
 - Explain different functions which MATLAB provides in fuzzy tool box.
- 8. a) Define the following:
 - i) Reliability
 - ii) Failure rate
 - iii) Hazard rate
 - b) Explain:

i) Decision theory

RGPVONLINE.COM

ii) Goal programming

冰冰冰冰冰冰

MEDC/MEMT/MEVD/MEIC/MEPE/ MEPS/MTPS/MTPA/MEHP-101

M.E/M.Tech., I Semester

Examination, December 2015

Advanced Mathematics

Time: Three Hours

Maximum Marks: 70

- Note: i) Attempt any five questions.
 - ii) All questions carry equal marks.
 - iii) Normal Distribution table allowed.
- a) Using the method of separation of variables solve
 a) a

$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$$
, where $u(x, 0) = 6e^{-3x}$.

- b) Write short notes on the following:
 - i) Wavelet transform
 - ii) Haar transforms
- 2. a) Solve the Poisson's equation, $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square with sides x = 0 = y, x = 3 = y with u = 0 on the boundary and mesh length = 1.

A string is stretched and fastened to two points l apart.
 Motion is started by displacing the string in the form

$$y = a \sin\left(\frac{\pi x}{t}\right)$$
 from which it is released at time $t = 0$.

Show that the displacement of any point at a distance x from one end at time t is given by

$$y(x,t) = a \sin\left(\frac{\pi x}{l}\right) \cos\left(\frac{\pi ct}{l}\right).$$

A random variable X has the following probability function:

X : 0 1 2 3 4 5 6 7 P(X): 0 k 2k 2k 3k k^2 $2k^2$ $7k^2 + k$

- Find the value of k
- ii) Evaluate P(X < 6), $P(X \ge 6)$
- iii) P(0 < X < 5)
- b) Write short notes on:
 - i) Stochastic process
 - ii) Markov process

4. a) In a bombing action there is 50% chance that any bomb will strike the target. Two direct hits are needed to destroy the target completely. How many bombs are required to be dropped to give a 99% chance or better of completely destroying the target? b) Let $\{x_n, n \ge 0\}$ be a Markov chain having state process

$$S = \{1, 2, 3, 4\} \text{ and transition matrix } \rho = \begin{vmatrix} \frac{1}{3} & \frac{2}{3} & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{vmatrix}$$

- a) Explain the following:
 - i) Elementary concept of estimation
 - ii) Theory of hypothesis
 - b) Patients arrive at a clinic according to a Poisson distribution at a rate of 30 patients per hour. The waiting room does not accommodate more than 14 patients. Examination time per patients is exponential with mean rate 20 per hour then,
 - i) Find the effective arrival rate at the clinic.
 - ii) What is the probability that an arriving patients will not wait?
 - iii) What is the expected waiting time until a patient is discharged from the clinic?