MEDC-103√ *

M.E./M. Tech. I Semester

Examination, December 2012

DSPApplication

Time: Three Hours

Maximum Marks: 70

Note: Attempt any five questions. All questions carry equal marks.

- a) Examine the following system with respect to static, linear, time invariant, causality and stability.
 - i) $y(n) = \sum_{k=-\infty}^{n+1} x(k)$
 - ii) y(n) = sig n[x(n)]
 - iii) $y(n) = x(n^2)$
 - iv) $y(n) = x(n)\cos(w_0 n)$
 - b) Determine the impulse response h(n) for the system described by second order difference equation.

$$y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1)$$

- 2. a) Determine the z-transform of the following signals.
 - i) $x(n) = -na^n u(-n-1)$

$$ii) \quad x(n) = \sum_{k=-\infty}^{n} y(k)$$

b) Determine all possible signals x(n) associated with the z-transform.

$$x(z) = \frac{5z^{-1}}{(1 - 2z^{-1})(3 - z^{-1})}$$

3. a) Determine the impulse response and the unit step response of the system shown in fig. 1.

- b) Discuss about different types of realization of discrete time system.
- 4. a) Discuss the following properties of DFT
 - i) Circular symmetries of a sequence.
 - ii) Symmetric property
 - b) Derive a signal flow graph for the N=16 point, radix-4 decimation in time FFT algorithm.

- 5. a) Discuss the impulse invariance method for designing IIR filter.
 - b) Explain the designing of Discrete time chebychey IIR filter.
- 6. a) Discuss the designing of FIR filter using Bartlett window.
 - b) Discuss the effect of finite register length in filter design.
- 7. How is the energy density spectrum computed for a deterministic signal of a finite sequence of data.
- 8. Write short notes on any Two of the following:
 - a) Multirate signal processing.
 - b) Haar transform
 - c) Recursive and Non recursive system.

PGPVONLINE, COM