M.E./M. Tech. I Semester

Examination, December 2017

Linear Control Systems

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions.

All questions carry equal marks.

1/20

Derive the expression for state transition matrix of continuous and discrete time control system.

Construct a state model for a system characterized by differential equation and obtain the different Canonical form.

$$y + 6y + 11y + 6y = u$$

(2.) ar

State and explain Lyapunov's stability theorem?

by Find $x_1(t)$ and $x_2(t)$ of the system described by:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -3 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Where the initial condition

$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

PTO

RGPVonline.com

RGPVonline.com

RGPVonline.com

What is State Observer? Explain with suitable example.

A feedback system has a closed loop transfer function

$$\frac{10(s+4)}{s(s+1)(s+3)}$$

Construct state model and it's representation.

Explain various methods of evaluation of state transition matrix.

Consider the linear autonomous system

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} x$$

using direct method of Lyapunov, determine the stability of the equilibrium state.

- a) Explain the Jordan Canonical form realization with suitable example.
 - b) Consider the discrete time system with state and output equation is given by

$$X(k+1) = \begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix} X(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

$$Y(k) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^T X(k)$$

Determine the observability of the above system.

RGPVonline.com

- 6. a) Using the Cayley Hamilton technique, find e^{AT} for

 - b) Find the Eigen values and Eigen vectors for the following matrices?

- Explain the stability of distributed parameter system.
 - Determine the Lyapunov function for the state representation given below:

$$\dot{x}_1 = 2x_2$$

$$\dot{x}_2 = -4x_1 - 6x_2$$

Use relation $V(x) = x^T px$

Write short notes on any two of the following:

Generation of Lyapunov function

by Controllability in continuous and discrete time

State transition matrix and solution of state equation