Total No. of Questions: 8]

[Total No. of Printed Pages: 2

Reil No

MEMT-204

M.E./M.Tech., II Semester

Examination, June 2017

Theory of Random Signal

Time: Three Hours

Maximum Marks: 70

www.rgpvonline.com

www.rgpvonline.com www.rgpvonline.com

www.rgpvonline.com

Note: i) Attempt any five questions.

- ii) All questions carry equal marks.
- 1. a) Explain central limit theorem and give its significance.
 - b) Write the characteristics of binomial probability distribution function.
- 2. a) Let X be a continuous random variable with uniform pdf in (0.2π) . Find the probability density function of $y = \cos x$
 - b) The random variable X is of continuous type, we form the random variable y = g(x). Find $f_v(x)$ of $g(x) = 2f_v(x) + 4$.
- 3. a) Explain non-stationary process.
 - b) Show that the process $x(f) = c\omega(f)$ is WSS iff $E\{c\} = 0$ and $\omega(f) = e^{j(\omega + \theta)}$
- 4. Write short notes on:
 - a) Ergodicity
 - b) Harmonic analysis
- 5. a) Explain Weiner filter for filtering of prediction.

MEMT-204

PTO

www.rgpvonline.com

[2]

b) Determine the optimum causal IIR Wiener filter for the signal x(n) = s(n) + w(n), where s(n) is an AR(1) process that satisfy the difference equation. s(n) = 0.8s(n-1) + v(n) Where $\{v(n)\}$ is a white noise sequence with variable

where $\{v(n)\}$ is a white noise sequence with variable $\sigma_u^2 = 0.49$ and $\{w(n)\}$ is a white noise sequence with variance $\sigma_u^2 = 1$. The processes |u(n)| and $\{w(n)\}$ are uncorrelated.

- a) State and prove minimum phase property of the backward prediction-error filter.
 - b) The power density spectrum of an AR process $\{x(n)\}$ is

given as
$$\Gamma_{xx}(\omega) = \frac{{\sigma_{tt}}^2}{|A(\omega)|^2} = \frac{25}{|1 - e^{-j\omega} + \frac{1}{2}e^{-j2\omega}|^2}$$

where σ_{ii}^2 is the variance of the input sequence. Determine the system function for the Wintering filter.

- 7. a) Give estimation of autocorrelation of random signals.
 - b) Determine the mean and autocorrelation of the sequence x(n), which is the output of a ARMA (1, 1) process described by the difference equation

$$x(n) = \frac{1}{2}x(n-1) + w(n) - w(n-1)$$

where w(n) is a white noise process with variances σ_u^2 .

- 8. Write short note on:
 - a) Periodogram
 - b) Parametric method

MEMT-204

www.rgpvonline.com

www.rgpvonline.com