rgpvonline.com

rgpvonline.com

Roll No

MEVD - 104

M.E./M. Tech., I Semester

Examination, December 2015

Digital Signal Processing

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions.

- All questions carries equal marks.
- State sampling theorem. For any analog signal how the is performed at minimum sampling rate how reconstruction is done?

 Consider the analog signal: $Xa(t) = 3 \cos 100 \pi t$. sampling rate is selected? Also discuss that if the sampling
 - Consider the analog signal: $Xa(t) = 3 \cos 100 \pi t$.
 - i) Determine the minimum sampling rate required to . avoid aliasing.
 - Suppose that the signal is sampled at the rate Fs = 75Hz. What is the discrete time signal obtained after sampling?
 - iii) What is the frequency 0 < F < Fs/2 of a sinusoid that yields samples identical to these obtained in part (ii).
- State and prove the following properties of Z-transform:
 - i) Time shifting
 - ii) Differentiation in Z-domain
 - b) Determine the Z-transform and the ROC of the signal: X(n) = [3(2n)-4(3n)]4(n)
- 3. a) Let X(k) be the N-point DFT of the sequence x(n), $0 \le n \le N - 1$. What is the N-point DFT of the sequence s(n), X(n) $0 \le n \le N - 1$?
 - b) State and prove the following properties of DFT:
 - Circular convolution
 - Time Reversal of a sequence

Compare in detail the computational complexity for the direct computation of the DFT versus the FFT algorithm.

[2]

- Draw and explain the flow graph of eight point decimation in time FFT algorithm.
- Discuss design of FIR digital filters using window method. Explain different types of windows used in the window design method.
 - Design an ideal highpass filter with a frequency response:

$$H_d\left(e^{j\omega}\right) = 1$$
 $for \frac{\pi}{4} \le |\omega| \le \pi$
= 0 $|\omega| < \frac{\pi}{4}$

Using a hanning window with M=11 and plot the frequency response.

- Discuss design of IIR digital filters using Butterworth approximation. Draw and explain its frequency response characteristics.
 - Design a digital band pass filter from a 2nd order analog low pass Butterworth prototype filter using bilinear transformation. The lower and upper frequencies for band pass filter are $\frac{5\pi}{12}$ and $\frac{7\pi}{12}$. Assume T = 2 sec.
- Explain the effect of finite register length if FIR filter design.
 - Draw and explain the flow graph of four point decimation in frequency FFT algorithm.
- How pipelining results in increased throughput of the DSP's? Explain in detail.
 - Discuss in detail designing of programmable DSPs.

MEVD-104

水水水水水水