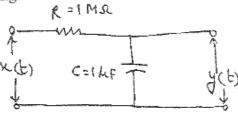
RGPVONLINE.COM

Roll No

MEVD - 104

M.E./M. Tech., I Semester


Examination, June 2014

Digital Signal Processing

Time: Three Hours

Max. Marks: 70

- Note: i) Attempt any five questions out of the following.
 - ii) Each question carries equal marks.
- 1. a) i) Explain Recursive and Non-Recursive system.
 - ii) What is R.O.C. and also explain its properties for the Z-transform.
 - b) For a low pass RC Network [R = 1M Ω and C = 1 μ F] Shown in fig.

Determine the equivalent discrete time expressions for the circuit output response y(n) when the input is $x(t) = e^{-2t}$ and the sampling frequency $f_s = 50$ Hz.

2. a) Use convolution to find X(n) if X(z) is given by

$$X(z) = \frac{1}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{4}z^{-1}\right)}$$

b) Find the two sided Z-transform of

$$x(n) = \left(\frac{1}{3}\right)^n \qquad n \ge 0$$

$$=(-2)^n$$
 $n \le -1$

- 3. Explain window techniques in detail.
- 4. a) A low pass filter has the desired response as given below

$$H_{d(\mathbf{j}w)} = \begin{cases} e^{-j3w} & o \le w < \frac{\pi}{2} \\ 0 & \frac{\pi}{2} < w \le \pi \end{cases}$$

Determine the filter coefficient h(n) for (m = 7) using type-I frequency sampling techniques.

- b) Explain any one design techniques for FIR filters
 - i) Fourier series method
 - ii) Frequency sampling method
- Convert the analog filter into the digital filter whose system function is

$$H(S) = \frac{S + 0.2}{\left(S + 0.2\right)^2 + 9}$$

Use the impulse invariant technique Assume T = 1 sec.

- Explain Matched Z-transform.
- Explain what is rounding and truncation errors.
 - b) Given $x(k) = \{20, -5.828 j2.414, 0, 0.172 j0.414, 0.$ $-0.172 \pm i414, 0, -5.828 \pm i2.414$
- 7. Given x(n) [1, 2, 3, 4, 4, 3, 2, 1] find X(k) using DIF FFT algorithm.
- 8. a) Explain signal design and integrity functions.
 - Explain Airborne Surveillance radar for air traffic control.