Roll No

MEVD - 104

M.E./M.Tech. I Semester

Examination, June 2013

Digital Signal Processing

Time: Three Hours

RGPVONLINE.COM

Maximum Marks: 70

Note: 1. Attempt any five questions.

2. All questions carry equal marks.

rgpvonline.com

- 1. a) Consider the analog signal $x_3(t) = 3 \cos 100zt$
 - i) Determine the minimum sampling rate required to avoid aliasing.
 - ii) Suppose that the signal is sampled at the rate F_s = 200 Hz what is the discrete time signal obtained after sampling?
 - iii) Suppose that the signal is sampled at the rate $F_s = 7.5$ Hz what is the discrete time signal obtained after sampling?
 - iv) What is the frequency $0 \le F \le \frac{Fs}{2}$ of a sinusoid that yields samples identical to those obtained in part (iii)
 - b) State and prove sampling theorem.
- 2. a) Determine the stability region for the causal system.

$$H(z) = \overline{1 + a_1 z^{-1} + a_2 z^{-2}}$$

by computing its poles and restricting them to inside of the circle.

b) Determine the zero state response of the system

PTO

$$y(n) = \frac{1}{2}y(n-1) + 4x(n) + 3x(n-1)$$
 to the input

 $x(n) = e^{jwon} u(n)$. What is the steady state response of the system.

- 3. a) State and prove the multiplication property of DFTs and circular convolution.
 - b) By means of the DFT and IDFT, determine the response of the FIR filter with impulse response.

h (n) =
$$\{1, 2, 3\}$$

to the input sequence

RGPVONLINE.COM

$$x(n) = \{1, 2, 2, 1\}$$

- 4. Derive the signal flow graph for the N=16 point, radix4 decimation in frequency FFT algorithm in which input sequence is in normal order and the computations are done in place.
- 5. a) Discuss the design of FIR filter using Keiser window.
 - b) Discuss the effect of finite register length in FIR filter design.
- 6. Discuss the elliptic approximation method for designing Band stop IIR filter.
- 7. Illustrate briefly on the following:
 - a) Pipelining
 - b) Retining

MEVD-104

RGPVONLINE.COM

- c) Parallel processing
- 8. Write short notes on any two of the following:
 - a) Park-McClellan's method
 - b) Butter worth approximation
 - c) Design of programmable DSP's

19B

MEVD-104