MEVD-203(A)

M. E./M. Tech. (Second Semester) EXAMINATION, Oct., 2009

VLSI TEST AND TESTABILITY

(Elective - I)

[MEVD - 203(A)]

Time: Three Hours

Maximum Marks: 100

Minimum Pass Marks: 40

Note: Attempt any five questions. All questions carry equal marks. Assume and mention suitable missing data any.

RGPVONLINE.COM

1. Show that for a fractional increase Δ in the area A of VLSI chip when hardware for design for testability is added the cost increase is given by:

$$\left[(1 + \Delta) \left(1 + \frac{A d \Delta}{\alpha + A d} \right)^{\alpha} - 1 \right] \times 100 \text{ percent}$$

where d is the defect density and a is the defect clustering parameter. Calculate the percentage cost increase if the original chip area is 1 cm^2 , $d = 1.25 \text{ defects/cm}^2$, $\alpha = 0.5$ and the area overhead is 10%, i. e. $\Delta = 0.1$.

Show that for a cluster fault distribution, if the required defect level is DL, then the fault coverage of tests should be:

$$T = \frac{(\beta + Af)(1 - DL)^{1/\beta} - \beta}{Af} \times 100 \text{ percent}$$

where f is fault density, β is fault clustering parameter and A is chip area.

3. Show that the two faults C S-a-0 and f S-a-1 are equivalent in the circuit of fig. 1. www.rgpvonline.com

Fig. 1

- Explain why the reverse-order fault simulation is not a practical test compaction technique for sequential circuits.
- 5. For a two-input AND gate and a two-input Exclusive-OR gate, develop the singular over of the gates, the propagation D-Cubes, and primitive D-Cubes of failure for a Sa 1 fault on one of the gate inputs.
- Use Roth's D-algorithm to perform ATPG for the SaO fault on the Fan out branch gate y to h for the circuit in ahead fig. 2.

Fig. 2

- 7. Explain how serial-scan testing is implemented.
- Explain how a pseudo-random sequence generator (PRSG)
 may be used to test a 16-bit datapath. How would the
 outputs be collected and checked? RGPVONLINE.COM