www.rgpvonline.com

www.rgpvonline.com

Total No. of Questions :8]

[Total No. of Printed Pages :2

Roll No

MMTP-204

M.E./M.Tech., II Semester

Examination, June 2017

Steam and Gas Turbine

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions.

- ii) All questions carry equal marks.
- iii) Draw neat diagrams wherever required.
- 1. a) Briefly explain the reason for operating a steam power plant based on the Rankine cycles at extremely low condenser pressures.
 - b) Draw velocity triangles for impulse turbines. Explain various energy losses in steam turbines.
- What do you understand by the term "feed heaters"? Compare direct contact heaters and surface heaters.
 - b) Define Inter-cooling and reheating in steam turbines. State their advantages.
- 3. a) Compare constant pressure and constant volume gas turbine cycles.
 - b) Explain the recent trends in steam turbine sizes and specifications used in India.
- Briefly discuss non reheating cycles. State advantages and disadvantages associated.
 - Discuss mixed pressure turbines. State applications.
- With neat sketch explain Pulse Jet Engine.
 - Discuss various pressure losses in gas turbines.

MMTP-204

234 🕏

PTO

www.rgpvonline.com www.rgpvonline.com

www.rgpvonline.com www.rgpvonline.com 6. An Open cycle gas turbine power plant works on Brayton cycle in which the maximum pressure and temperature are limited to 5 bar and 900K. The pressure and temperature of the gas entering in to the compressor are atmospheric. Reheating is used at a pressure of 2.5 bar where are temperature of the gases is increased to its original temperature at turbine inlet.

[2]

The air flow rate through the plant is 600 kg/min.

Calculate:

- a) Thermal efficiency of plant
- b) Plant capacity in MW. The exhaust pressure of the turbine is also I bar.

Assume isentropic compression and expansion.

Take Cp=1kJ/kg. K for air and gases C.V. of fuel = 40,000 kJ/kg.

- 7. A steam power plant operates on the generative Rankine cycle. Steam is initially superheated to 400°C at 40 bar and is expanded in a high pressure turbine to 5.5 bar. At this point some steam is bled off for use in an open feed water. The remaining steam is then expanded in a low pressure turbine to a condenser pressure of 0.02 bar. Illustrate the cycle on a T-S diagram and assuming 100% isentropic efficiency and that pumping work is negligible, determine the:
 - a) Steam bled off the turbine
 - b) Heat added to the boiler.
 - Network output.
 - Cycle efficiency
 - Boiler's steam generation rate per second given that the plant output is 100 MW.
- 8. Write short note on following (any two):
 - Practical Feed Heating Cycles.
 - Heat Accumulators.
 - Nozzle control governing
 - Constant volume cycles.

MMTP-204
