Toral No. of Qrestions : 8 fTatal Ne, of Printed Pages @ 4

IT-402 (CBGS)

B.Tech., IV Semester
Examination, November 2019
Choice Based Grading System (CBGS)
Computer Architecture

Time : Three Hours
Maximwm Marks : 70

Nore: 1) Attempt any five gquestions.

fer=#1 qTa ne=l =Y gE BRI
ii} All questions carry equal marks.
Tft el & |HA 3B B
iii)In case of any doubt or dispute the English Version
question should be treated as final.

el off PR 3 Hag arera farg Ht fRufer # sl
¥% Ued oY i AT SR

1. a) Explaincomputer architecture and organization. 7

R e (AR) iR S TS i e
|

b) Explain the eight great ideas invented by computer

: 7
architecture.

Wwﬁﬁﬁ?(mﬁﬁm)mmﬁﬁﬁﬁﬂ
e fERi i e &

PTO
[T-402 (CBGS)

wod duIuoAdIr smam/dy

Ry
.

121
you OVETCOME it? And

7 How do
.

whatt j ot hazare ‘
> l.il-...‘\'-L:IIEF ils side effects- |

et (€T T 1 AR R A7 SR
- : ot aal |

ntages
FR S

essing mode? Explain the various
th suitable examples. 7

mﬁﬁﬂ@ﬁmﬁa

of multibus urganizan-.:rn? 7

List the adva

redad TS &
what 15 @n adds
addressing modes Wi

@W%&m%?mmﬂﬁ?
FaTsd |

b) Draw the typical bloc
explain how it is used for direct

memory and peripherals?

b

a)

k diagram of a DMA controller and

data transfer between
f)

What is virtual memory? Explain in detail about how
virtual memory is implemented with neat diagram? 7

aeforer AN T 27 aﬁmmﬁaaﬁmaﬁaﬁm@x
o) it fopa s 2, §9 TR LRCLEEN

b) J‘What is memory hierarchy? What is the need t
implement memory as a hierarchy’

e e e 2 Y) e & 9
&Y e F1 8 7

0
I

A = TP

13

w) Explainhow the instruction Pipeline works
or
: 7

e arEuTe da D Fre e RS
 What are the i . ? |
s Vhat = VArous singat an i
pipehine can stal|? Mustrate w?ﬂ:sar::::ﬁ:;lr;*:nﬂmmmn
g, 7

Ex]:Jfﬂlﬂ Computer main memory? And difference between
main memory and cache memory. 7

PR & T A) e R 2 SR R A ek
&9 TR % Teg are woE

Describe the role of system software to improve the
performance of a computer. L

FHICY B TG I dge = & o Rieed Alfedat &
f¥yepT W1 qU B

b)

a) What are the disadvantages of increasing the number of
stages in pipelined processing? 7
qTEUETS MEEpRYT § RO Bl H&A1 G &b 71 THAF
%? hitp://www.rgpvonline.com

Describe the USB architecture with the help of a neat
7

b)

diagram.

e W NG g1 TN anfhcerer @i i |
Answer the following. 14
i) Explain]OP

ii) Explain Cache memory
iii) Write a short notes Bus and memory Transfers

iv) Compare UMA and NUMA multi processors.

(<1

s s ofe ke e 3K

Q 1 (a) Computer Architecture:
: Computer Architecture is a functional description of requirements and design implementation for the

various parts of computer. it deals with functional behavior of computer system. It comes before the
computer organization while designing a computer.

Computer Organization:
Computer Organization comes after the decide of Computer Architecture first. Computer Organization is

how operational attribute are linked together and contribute to realise the architectural specification.
Computer Organization deals with structural relationship.

1. Architecture describes what the computer does.

Organization describes how it does it

Computer Architecture deals with functional

2. behavior of computer system.

Computer Organization deals with

structural relationship.

In above figure, its clear that it deals with high-

3. level design issue.

In above figure, its also clear that it

deals with low-level design issue.

4. Architecture indicates its hardware.

Where, Organization indicates its

performance.

For designing a computer, its architecture is

5. fixed first.

For designing a computer, organization

is decided after its architecture.

Computer Architecture is also cailed as

6. instruction set architecture.

Computer Organization is frequently

called as micro architecture.

Computer Architecture comprises logical
functions such as instruction sets, registers,

7. data types and addressing modes.

Computer Organization consists of
physical units like circuit designs,

peripherals and adders.

Architecture coordinates between the hardware Computer Organization handles the

and software of the system. segments of the network in a system.

(b)

Application of the following great ideas has accounted for much of the tremendous
growth in computing capabilities over the past 50 years.

1.

5.

Design for Moore’s Law

The one constant for computer designers is rapid change, which is driven
largely by Moore’s Law. It states that integrated circuit resources double
every 18-24 months. Moore’s Law resulted from a 1965 prediction of such
growth in IC capacity made by Gordon Moore, one of the founders of Intel.
As computer designs can take years, the resources available per chip can
easily double or quadruple between the start and finish of the project. Like a
skeet shooter, computer architects must anticipate where the technology will
be when the design finishes rather than design for where it starts. We use an
“up and to the right” Moore’s Law graph to represent designing for rapid
change.

Use Abstraction to Simplify Design

Both computer architects and programmers had to invent techniques to
make themselves more productive, for otherwise design time would
lengthen as dramatically as resources grew by Moore’s Law. A major
productivity technique for hardware and soft ware is to use abstractions to
represent the design at different levels of representation; lower-level details
are hidden to offer a simpler model at higher levels. We’ll use the abstract
painting icon to represent this second great idea.

Make the common case fast

Making the common case fast will tend to enhance performance better than
optimizing the rare case. Ironically, the common case is often simpler than
the rare case and hence is often easier to enhance. This common sense
advice implies that you know what the common case is, which is only
possible with careful experimentation and measurement. We use a sports
car as the icon for making the common case fast, as the most common trip
has one or two passengers, and it’s surely easier to make a fast sports car
than a fast minivan.

Performance via parallelism

Since the dawn of computing, computer architects have offered designs that
get more performance by performing operations in parallel. We’ll see many
examples of parallelism in this book. We use multiple jet engines of a plane
as our icon for parallel performance.

Performance via pipelining

A particular pattern of parallelism is so prevalent in computer architecture
that it merits its own name: pipelining. For example, before fire engines, a
“bucket brigade” would respond to a fire, which many cowboy movies
show in response to a dastardly act by the villain. The townsfolk form a
human chain to carry a water source to fire, as they could much more
quickly move buckets up the chain instead of individuals running back and
forth. Our pipeline icon is a sequence of pipes, with each section
representing one stage of the pipeline.

6. Performance via prediction

Following the saying that it can be better to ask for forgiveness than to ask
for permission, the next great idea is prediction. In some cases it can be
faster on average to guess and start working rather than wait until you know
for sure, assuming that the mechanism to recover from a misprediction is
not too expensive and your prediction is relatively accurate. We use the
fortune-teller’s crystal ball as our prediction icon.

7. Hierarchy of memories

Programmers want memory to be fast, large, and cheap, as memory speed
often shapes performance, capacity limits the size of problems that can be
solved, and the cost of memory today is often the majority of computer cost.
Architects have found that they can address these conflicting demands with
a hierarchy of memories, with the fastest, smallest, and most expensive
memory per bit at the top of the hierarchy and the slowest, largest, and
cheapest per bit at the bottom. Caches give the programmer the illusion that
main memory is nearly as fast as the top of the hierarchy and nearly as big
and cheap as the bottom of the hierarchy. We use a layered triangle icon to
represent the memory hierarchy. The shape indicates speed, cost, and size:
the closer to the top, the faster and more expensive per bit the memory; the
wider the base of the layer, the bigger the memory.

8. Dependability via redundancy

Computers not only need to be fast; they need to be dependable. Since any
physical device can fail, we make systems dependable by including
redundant components that can take over when a failure occurs and to help
detect failures. We use the tractor-trailer as our icon, since the dual tires on
each side of its rear axels allow the truck to continue driving even when one
tire fails. (Presumably, the truck driver heads immediately to a repair
facility so the fl at tire can be fixed, thereby restoring redundancy!)

Q.2

(a)

Data hazards occur when instructions that exhibit data dependence modify data in
different stages of a pipeline. Ignoring potential data hazards can result in race
conditions (also termed race hazards). There are three situations in which a data

hazard can occur:

1. Read after write (RAW), a true dependency

2. Write after read (WAR), an anti-dependency

3. Write after write (WAW), an output dependency
Consider two instructions il and i2, with il occurring before i2 in program order.
Read after write (RAW
(i2 tries to read a source before il writes to it) A read after write (RAW) data
hazard refers to a situation where an instruction refers to a result that has not yet
been calculated or retrieved. This can occur because even though an instruction 1s

executed after a prior instruction, the prior instruction has been processed only
partly through the pipeline.

Example

For example:

il. R2<-R5 +R3
i2. R4 <-R2 +R3

The first instruction is calculating a value to be saved in register R2, and the second
is going to use this value to compute a result for register R4. However, in

a pipeline, when operands are fetched for the 2nd operation, the results from the
first have not yet been saved, and hence a data dependency occurs.

A data dependency occurs with instruction 12, as it is dependent on the completion
of mstruction 1l.

Write after read (WAR)

(12 tries to write a destination before it is read by 11) A write after read (WAR) data
hazard represents a problem with concurrent execution.

Example

For example:

il. R4 <-R1 + RS
i2. RS <-R1 +R2

In any situation with a chance that i2 may finish before i1 (i.e., with concurrent
execution), it must be ensured that the result of register RS is not stored
before 11 has had a chance to fetch the operands.

Write after write (WAW)

(i2 tries to write an operand before it is written by i1) A write after write (WAW)
data hazard may occur in a concurrent execution environment.

Example

For example:

il. R2 <-R4 + R7
i2. R2<-R1 +R3

The write back (WB) of 12 must be delayed until il finishes executing.

(b)

A typical digital computer has many registers, and paths must be provided to
transfer information from one register to another. The number of wires will be
excessive if separate lines are used between each register and all other registers in
the system. A bus structure consists of a set of common lines, one for each bit of a
register, through which binary information is transferred one at a time. Control
signals determine which register is selected by the bus during each particular
register transfer. The multiplexers select the source register whose binary
information is then placed on the bus.

For example, the construction of a bus system for four registers is shown in Figure
Each register has four bits, numbered O through 3. The bus consists of four 4x1
multiplexers each having four data inputs, O through 3, and two selection inputs, S1
and SO

Q.3

(a)

The operation field of an instruction specifies the operation to be performed. This
operation will be executed on some data which is stored in computer registers or
the main memory. The way any operand is selected during the program execution is
dependent on the addressing mode of the instruction. The purpose of using
addressing modes 1s as follows:

1. To give the programming versatility to the user.
2. To reduce the number of bits in addressing field of instruction.

Tvypes of Addressing Modes

Below we have discussed different types of addressing modes one by one:

Immediate Mode

In this mode, the operand is specified in the instruction itself. An immediate mode
instruction has an operand field rather than the address field.

For example: ADD 7. which says Add 7 to contents of accumulator. 7 is the
operand here.

Register Mode

In this mode the operand is stored in the register and this register is present in CPU.
The instruction has the address of the Register where the operand is stored.

Advantages
¢ Shorter instructions and faster instruction fetch.
o Faster memory access to the operand(s)
Disadvantages
e Very limited address space

o Using multiple registers helps performance but it complicates the
instructions.

Register Indirect Mode

In this mode, the instruction specifies the register whose contents give us the
address of operand which is in memory. Thus, the register contains the address of
operand rather than the operand itself.

Auto Increment/Decrement Mode

In this the register is incremented or decremented after or before its value is used.
Direct Addressing Mode

In this mode, effective address of operand is present in instruction itself.

» Single memory reference to access data.
¢ No additional calculations to find the effective address of the operand.

For Example: ADD R1. 4000 - In this the 4000 1s effective address of operand.

Indirect Addressing Mode

In this, the address field of instruction gives the address where the effective address
is stored in memory. This slows down the execution, as this includes multiple
memory lookups to find the operand.

Relative Addressing Mode

It is a version of Displacement addressing mode.

In this the contents of PC(Program Counter) is added to address part of instruction
to obtain the effective address.

EA = A + (PC), where EA 1s effective address and PC 1s program counter.

The operand 1s A cells away from the current cell(the one pointed to by PC)

Base Register Addressing Mode

It is again a version of Displacement addressing mode. This can be defined as EA =
A + (R), where A 1s displacement and R holds pointer to base address.

Stack Addressing Mode

In this mode, operand is at the top of the stack. For example: ADD, this instruction
will POP top two items from the stack, add them, and will then PUSH the result to
the top of the stack.

(b)

Direct Memory Access (DMA) transfers the block of data between

the memory and peripheral devices of the system, without the participation of
the processor. The unit that controls the activity of accessing memory directly 1s
called a DMA controller.

The processor relinquishes the system bus for a few clock cycles. So, the DMA
controller can accomplish the task of data transfer via the system bus. In this
section, we will study in brief about DMA, DMA controller, registers, advantages
and disadvantages.

gm-| Data count

Data lines - | Data register

Address lines wm—— g | Addesss Reg,

DMA request g
DMA acknowledge | Control
Interrupt —a——— | logic
Rasitjd - g
write o

DMA controller is a hardware unit that allows 1/0O devices to access memory
directly without the participation of the processor. Here, we will discuss the
working of the DMA controller. Below we have the diagram of DMA controller
that explains its working

Whenever an [/O device wants to transfer the data to or from memory, it sends the
DMA request (DRQ) to the DMA controller. DMA controller accepts this DRQ
and asks the CPU to hold for a few clock cycles by sending it the Hold request
(HLD).

CPU receives the Hold request (HLD) from DMA controller and relinquishes the
bus and sends the Hold acknowledgement (HLLDA) to DMA controller.

After receiving the Hold acknowledgement (HLDA), DMA controller
acknowledges I/O device (DACK) that the data transfer can be performed and
DMA controller takes the charge of the system bus and transfers the data to or from
memory.

When the data transfer is accomplished, the DMA raise an interrupt to let know
the processor that the task of data transfer 1s finished and the processor can take
control over the bus again and start processing where it has left.

Now the DMA controller can be a separate unit that 1s shared by various 1/O
devices, or it can also be a part of the I/0 device interface.

Q.4

(a)

Virtual memory is a concept used in some large computer systems that permit the
user to construct programs as though a large memory space were available, equal to
the totality of auxiliary memory. Each address that is referenced by the CPU goes
through an address mapping from the so-called virtual address to a physical address
in main memory.

A virtual memory system provides a mechanism for translating program-generated
addresses into correct main memory locations. This is done dynamically, while
programs are being executed in the CPU. The translation or mapping is handled
automatically by the hardware by means of a mapping table.

In our example, the address field of an instruction code will consist of 20 bits but
physical memory addresses must be specified with only 15 bits.

A table is then needed, as shown in Fig. to map a virtual address of 20 bits to a
physical address of Auxiliary memory Program 1 Data 1, 1 Data 1, 2 Program 2
Data 2, | Program 1 Data 1, 1 Address space N = 1024K = 220 Memory space M =
32k =215 Main memory 148 15 bits. The mapping is a dynamic operation, which
means that every address is translated immediately as a word is referenced by CPU.
The mapping table may be stored in a separate memory as shown in Fig. 7-17 or in
main memory. In the first case, an additional memory unit is required as well as
one extra memory access time. In the second case, the table.

Memory table for mapping a virtual

address
Yo' adcress
A P
wirtusl Y (A Rl G e PR
RS- D R ""‘I?.I-'-l:l': ‘I"ﬂh‘:.: I H'..I:.-...
rep s by £kl rEgis T
|58 hitn) j1 % b
s i
] P B gy =8 k. o
P ey Cabile] | Pl i e g
bl Tosr re-pix ke b sdTosr reqlicd

(b)

Memory Hierarchy

Register

Memory
Increasing order of Cache
access time ratio Memory
Main Memory Primary Memory
Magnetic Disks
IR Augxillary
Memory

Magnetic Tapes

The total memory capacity of a computer can be visualized by hierarchy of
components. The memory hierarchy system consists of all storage devices
contained 1n a computer system from the slow Auxiliary Memory to fast Main
Memory and to smaller Cache memory.

Auxillary memory access time is generally 1000 times that of the main memory,
hence it is at the bottom of the hierarchy.

The main memory occupies the central position because it is equipped to
communicate directly with the CPU and with auxiliary memory devices through
Input/output processor (1/0).

When the program not residing in main memory is needed by the CPU, they are
brought in from auxiliary memory. Programs not currently needed in main memory
are transferred into auxiliary memory to provide space in main memory for other
programs that are currently in use.

The cache memory is used to store program data which 1s currently being executed
in the CPU. Approximate access time ratio between cache memory and main
memory

Q.5

(a)

Instruction pipelining is a technique used in the design of

modern microprocessors, microcontrollers and CPUs to increase

their instruction throughput (the number of instructions that can be executed in a
unit of time).

The main idea is to divide (termed "split") the processing of a CPU instruction, as
defined by the instruction microcode, into a series of independent steps of micro-
operations (also called "microinstructions', ""micro-op" or "pop'), with storage
at the end of each step. This allows the CPUs control logic to handle instructions at
the processing rate of the slowest step, which is much faster than the time needed to
process the instruction as a single step.

The term pipeline refers to the fact that each step is carrying a single
microinstruction (like a drop of water), and each step is linked to another step
(analogy; similar to water pipes).

Most modern CPUs are driven by a clock. The CPU consists internally of logic and

memory (flip flops). When the clock signal arrives, the flip flops store their new
value then the logic requires a period of time to decode the flip flops new values.
Then the next clock pulse arrives and the flip flops store another values, and so on.
By breaking the logic into smaller pieces and inserting flip flops between pieces of
logic, the time required by the logic (to decode values till generating valid outputs
depending on these values) is reduced. In this way the clock period can be reduced.
For example, the RISC pipeline is broken into five stages with a set of flip flops
between each stage as follows:

Instruction fetch
Instruction decode and register fetch
Execute

B -

Memory access
5. Register write back

Processors with pipelining consist internally of stages (modules) which can semi-
independently work on separate microinstructions. Each stage is linked by flip
flops to the next stage (like a "chain") so that the stage's output is an input to
another stage until the job of processing instructions is done. Such organization of
processor internal modules reduces the instruction's overall processing time.

(b)

There are some factors that cause the pipeline to deviate its normal performance.
Some of these factors are given below:

. Timing Variations

All stages cannot take same amount of time. This problem generally occurs in
instruction processing where different instructions have different operand
requirements and thus different processing time.

2. Data Hazards

When several instructions are in partial execution, and if they reference same data
then the problem arises. We must ensure that next instruction does not attempt to
access data before the current instruction, because this will lead to incorrect results.

3. Branching

In order to fetch and execute the next instruction, we must know what that
instruction is. If the present instruction is a conditional branch, and its result will
lead us to the next instruction, then the next mstruction may not be known until the
current one is processed.

4. Interrupts

Interrupts set unwanted instruction into the instruction stream. Interrupts effect the
execution of instruction.

5. Data Dependency

It arises when an instruction depends upon the result of a previous instruction but
this result is not yet available.

Q.6

(a)

The memory unit that communicates directly with the CPU is called the main memory. The
main memory is the central storage unit in a computer system. It is a relatively large and fast
memory used to store programs and data during the computer operation. The principal
technology

used for the main memory is based on semiconductor integrated circuits. Integrated circuit
RAM

chips are available in two possible operating modes, static and dynamic. The static RAM
consists

essentially of internal flip-flops that store the binary information. The stored information
remains

valid as long as power is applied to unit. The dynamic RAM stores the binary information in
the

form of electric charges that are applied to capacitors. The capacitors are provided inside the
chip

by MOS transistors. The stored charge on the capacitors tend to discharge with time and the
capacitors must be periodically recharged by refreshing the dynamic memory. Refreshing is
done

by cycling through the words every few milliseconds to restore the decaying charge. The
dynamic

RAM offers reduced power consumption and larger storage capacity in a single memory chip.
The static RAM is easier to use and has shorted read and write cycles.

Both are temporary memories but they vary mainly based on speed, size and cost.

1. Placement: Cache is usually present on the CPU chip itself. Primary
memory(RAM) is placed on the motherboard and is connected to the CPU via the
Memory Bus.

2. Speed: Because cache is closer to the CPU, it is much faster than RAM. Each
read access on the primary memory has to travel via the Memory Bus while the
CPU cache is right there.

3. Size: The size of the cache is much less compared to that of primary memory.
The size of Primary Memory or RAM in today's computers is a few GBs while the
size of cache is a few MBs.

4. Cost: Cache is more expensive than primary memory.

Why to have another temporary memory when we already have cheap and large
main memory?

It is mainly to improve speed.

The cache is there to reduce the average memory access time for the CPU.

When the CPU needs some data from the memory, the cache is checked first and if
data is available in the cache it gets it from there. There is no need to perform a
memory read.

Sometimes cache is divided into two levels called L1 cache(Level 1) and L2
cache(Level 2). L1 is the closest to CPU and also the most expensive. Whenever
there is a memory read request, L1 is checked first and then L2 and then the
primary memory.

(b)

There are two main types of software: systems software and application software.
Systems software includes the programs that are dedicated to managing the
computer itself, such as the operating system, file management utilities, and disk
operating system (or DOS).

System software is a software that provides platform to other softwares. Some
examples can be operating systems, antivirus softwares, disk formating softwares,
Computer language translators etc. These are commonly prepared by the computer
manufacturers. These softwares consists of programs written in low-level
languages, used to interact with the hardware at a very basic level. System software
serves as the interface between the hardware and the end users.

The most important features of system software include :

1. Closeness to the system

2. Fast speed

3. Difficult to manipulate

4. Written in low level language

5. Difficult to design

Q.7

Pipelining a CPU improves its throughput. More pipeline stages means each stage
can run faster, increasing the clock speed of the chip. Having more pipeline stages
increases the number of instructions that can be executed per time.

However, the latency of individual instructions will be increased because of the
added pipeline registers. Also, there is an increased area and power cost for the
pipeline registers. One big issue with increasing pipeline stages is that it is only
effective if you have instructions to feed the pipeline. For example, dependencies
can be a challenge for deeply pipelined processors. Unless dependencies can be
handled through bypassing, stalls/pipeline bubbles may be introduced which
decrease the throughput achieved. Also, branch mispredicts can become very costly
as a deeper pipeline can also mean more "wasted" computation on a branch
mispredict. The misprediction also lowers the achieved throughput from the
maximum possible.

The speedup(S) of a pipeline processing over an equivalent non-pipeline processing is
defined by the ratio:

S =ntn (k+n—-Dtp
As the number of tasks increases, n becomes much larger than k — 1, and k + n— 1

approaches the value of n. Under this condition, the speedup becomes:
S=tn/tp

(b)

USB is a system for connecting a wide range of peripherals to a computer,
including pointing devices, displays, and data storage and communications
products. Although not a relatively new development in personal computing, it has
only recently gained popularity due to increasing software support. This document
discusses what the USB system does and how it is done. The technical detail covers
the system's logical structure, rather than the electrical or software characteristics.
The Universal Serial Bus is a network of attachments connected to the host
computer. These attachments come in two types known as Functions and

Hubs. Functions are the peripherals such as mice, printers, etc. Hubs basically act
like a double adapter does on a power-point, converting one socket, called a port,
into multiple ports. Hubs and functions are collectively called devices.

As far as the functions are concerned, hubs are furthermore like double adapters
because although the entire system is physically in the star topology seen in Figure
1(a), logically the system acts like a bus topology. This means that signals appear to
travel along a single set of wiring, called the bus, to the host and is accessible by all
functions, as illustrated in Figure 1(b). However, the host does keep track of the
physical arrangements so that if a hub becomes disconnected, it is aware that all
hubs and functions attached to it will consequently be disconnected too.

Host

Figure 1(a) - The physical USE arrangement
Funclions are joing to huhs in a star arrangement

[Mouse] [Speakers | @ntllti}
‘ Smdle cnnn‘e-:tmg s Host

[Keyboard] [Printer] kodem |
Figure 1{k) : How the IS0 system appears to functions

Q.8

(0

An input-output processor (IOP) is a processor with direct memory access
capability. In this, the computer system is divided into a memory unit and number
of processors.

Each IOP controls and manage the input-output tasks. The IOP is similar to CPU
except that it handles only the details of I/O processing. The TOP can fetch and
execute its own instructions. These IOP instructions are designed to manage 1/O
transters only.

The IOP operates independent from CPU and transfer data between peripherals and
memory.

Perlpnerzl devices

- ST, P
<PE 1) (FD2) (PD9
Wemry hus JoNY N

D — 1P 4LL

Mzmory urit

(iD)

If the active portions of the program and data are placed in a fast small memory, the

average memory access time can be reduced, thus reducing the total execution time of the
program. Such a fast small memory is referred to as a cache memory. It is placed between the
CPU and main memory as illustrated in Figure. The cache memory access time is less than the
access time of main memory by a factor of 5 to 10. The cache is the fastest component in the
memory hierarchy and approaches the speed of CPU components.

A system with 512 x 12 cache and 32 K x 12 of
main memory.

Main Memory
32K x 12 cpPU

Cache Memory
512 x12

(iif)

Bus

A typical digital computer has many registers, and paths must be provided to
transfer in formation form one register to another. The number of wires will be
excessive if separate lines are used between each register and all other registers in
the system. A more efficient scheme for transferring information between registers
in a multiple-register configuration is a common bus system. A bus structure
consists of a set of common lines, one for each bit of a register, through which
binary information is transferred one at a time. Control signals determine which
register is selected by the onus during each particular register transfer.

Memory Transfer

The transfer of information from a memory word to the outside environment is
called a read operation. The transfer of new information to be stored into the
memory is called a write operation. A memory word will be symbolized by the
letter M. The particular memory word among the many available is selected by the
memory address during he transfer. It is necessary to specify the address of M
when writing memory transfer operations; this will be done by enclosing the
address in square brackets following the letter M. Consider a memory unit that
receives the address form a register, called the address register, symbolized by AR.
The data are transferred to another register, called the data register, symbolized by
DR. the read operation can be stated as follows: Read: DR «— M [AR]

(iv)

Basis For UMA NUMA
Comparison
Basic Uses a single memory Multiple memory controller
controller
Type of buses Single, multiple and Tree and hierarchical
used crossbar.
Memory Equal Changes according to the

accessing time

distance of microprocessor.

Suitable for

General purpose and time-

Real-time and time-critical

sharing applications applications
Speed Slower Faster
Bandwidth Limited More than UMA.

