Q.1 (a) If \(y = \sin(m \sin^{-1} x) \),

Prove that \((1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + m^2 y = 0 \)

Sol. Given: The function \(y = \sin(m \sin^{-1} x) \)

Differentiating equation (i) w.r.t. \(x \), we get

\[
y_1 = \cos(m \sin^{-1} x) \frac{m}{\sqrt{1-x^2}}
\]

\[
(\sqrt{1-x^2})y_1 = m \cos(m \sin^{-1} x).
\]

Squaring both the sides, we get

\[
(1-x^2)y_1^2 = m^2 \cos^2(m \sin^{-1} x)
\]

\[
(1-x^2)y_1^2 = m^2 [1 - \sin^2(m \sin^{-1} x)]
\]

\[
(1-x^2)y_1^2 = m^2 [1 - y^2] \quad \text{[From equation (i)]}
\]

Differentiating equation (ii) w.r.t. \(x \), we get

\[
(1-x^2)2y_1y_2 - 2xy_1^2 = -m^2 2yy_1
\]

\[
(1-x^2)y_2 - xy_1 = -m^2 y
\]

\[
(1-x^2)y_2 - xy_1 + m^2 y = 0.
\]

Hence Proved.

Q.1 (b) The equation of the tangent at the point \((2, 3)\) of the curve \(y^2 = ax^3 + b \) is \(y = 4x - 5 \). Find the values of \(a \) and \(b \).

Sol. Given: The equation of curve is,

\[
y^2 = ax^3 + b \quad \text{... (i)}
\]

Differentiating equation (i) w.r.t. \(x \), we get

\[
2y \frac{dy}{dx} = 3ax^2
\]

\[
\frac{dy}{dx} = \frac{3ax^2}{2y}
\]

\[
\left(\frac{dy}{dx} \right)_{(2,3)} = \frac{3a(2)^2}{2(3)} = 2a
\]

The equation of tangent at \((2, 3)\) is

\[
(y - y_1) = \left(\frac{dy}{dx} \right)_{(2,3)} (x - x_1)
\]

\[
y - 3 = 2a(x - 2)
\]

\[
y = 2ax - 4a + 3
\]

But given, the equation of tangent is

\[
y = 4x - 5
\]

\[
\text{... (ii)}
\]

Equation (ii) and (iii) represent the same line hence comparing them, we get

\[
1 = \frac{2a}{4} = \frac{-4a + 3}{-5}
\]
$$\frac{2a}{4} = 1 \Rightarrow a = 2 \quad \text{and} \quad -\frac{4a+3}{-5} = 1 \Rightarrow a = 2 .$$

At the point (2, 3), from equation (i), we get

$$3^2 = 2(2)^3 + b \Rightarrow b = 9 - 16 = -7 .$$

\[\therefore \quad a = 2, b = -7 . \quad \text{Ans.} \]

Q.1

(c) Evaluate \(\int_0^{\pi/2} \frac{\sin 2x}{\sin^4 x + \cos^4 x} \, dx \).

Sol.

Given: \(I = \int_0^{\pi/2} \frac{\sin 2x}{\sin^4 x + \cos^4 x} \, dx \)

\[I = \int_0^{\pi/2} \frac{\sin 2x}{\sin^4 x + (1 - \sin^2 x)^2} \, dx . \]

Putting \(\sin^2 x = t \), so that \(2 \sin x \cos x \, dx = dt \) or \(\sin 2x \, dx = dt \).

When \(x = 0 \) then \(t = 0 \) and when \(x = \frac{\pi}{2} \) then \(t = 1 \).

\[I = \left[\frac{1}{2} \int_0^1 \frac{dt}{t^2 - (1-t)^2} \right] \]

\[I = \left[\frac{1}{2} \int_0^1 \frac{dt}{t^2 - (1-t)^2} \right] = \frac{1}{2} \left[\tan^{-1} \left(\frac{t - \frac{1}{2}}{\frac{1}{2}} \right) \right]_0^1 \]

\[I = \left[\tan^{-1} \left(\frac{t - \frac{1}{2}}{\frac{1}{2}} \right) \right]_0^1 = \tan^{-1} 1 - \tan^{-1} (-1) \]

\[I = \frac{\pi}{4} \left(\frac{\pi}{4} \right) \quad \text{Ans.} \]

Q.2

(a) Expand by Maclaurin's theorem \(e^{\cos x} \) as far as the term \(x^3 \).

Sol.

Given: The function \(y = e^{\cos x} \)

\(\Rightarrow (y)_0 = e^0 = 1 , \)

Differentiating \(y \) w.r.t. \(x \) successively, we get

\(y_1 = e^{\cos x} (1 - \cos x \sin x) = y(\cos x - x \sin x) \quad \Rightarrow (y)_0 = (y)_0 \cdot 1 = 1 , \)

\(y_2 = y_1 (\cos x - x \sin x) + y(- \sin x - x \sin x - x \cos x) \quad \Rightarrow (y)_2 = (y)_2 \cdot 1 = 1 , \)

\(y_3 = y_2 (\cos x - x \sin x) + y_1(- \sin x - \sin x - \sin x - x \cos x) \)

\(- y_2(2 \sin x \cos x) - y(2 \cos x + \cos x \cos x - x \sin x) \quad \Rightarrow (y)_3 = (y)_3 \cdot 1 = 1 , \)

\(y_4 = y_3 (\cos x - x \sin x) + y_2(- 2 \sin x - x \cos x) - 2 y_2 (2 \sin x + x \cos x) \)

\(- 3 y_2 (3 \cos x - x \sin x) - y_1 (3 \cos x - x \sin x) - y(4 \sin x + x \cos x) \quad \Rightarrow (y)_4 = (y)_4 \cdot 3 = 3 , \)

\(y_5 = y_4 (\cos x - x \sin x) - 3 y_3 (2 \sin x + x \cos x) \)

\(- 3 y_3 (3 \cos x - x \sin x) + y(4 \sin x + x \cos x) \quad \Rightarrow (y)_5 = (y)_5 \cdot 3 = 3 , \)

\(y_6 = y_5 (\cos x - x \sin x) - 4 y_4 (2 \sin x + x \cos x) - 6 y_4 (3 \cos x - x \sin x) \)
According to Maclaurin’s series, we have

\[y = (y_0) + x(y_1)_0 + \frac{x^2}{2!}(y_2)_0 + \frac{x^3}{3!}(y_3)_0 + \ldots + \frac{x^n}{n!}(y_n)_0 + \ldots \]

\[e^{\cos x} = 1 + \frac{x}{2} - \frac{x^2}{3} - \frac{11x^4}{24} - \frac{x^6}{5} - \ldots \]

Ans.

Q.2 (b) Prove that the curvature at the point \((x, y)\) of the catenary

\[y = c \cos h \left(\frac{x}{c} \right) \]

is \(y^2 \).

Sol. Given: The curve \(y = c \cosh \left(\frac{x}{c} \right) \)

Differentiating equation (i) with respect to \(x \), we get

\[\frac{dy}{dx} = c \sinh \left(\frac{x}{c} \right) \left(\frac{1}{c} \right) = \frac{\sinh \left(\frac{x}{c} \right)}{c} \]

Again differentiating with respect to \(x \), we get

\[\frac{d^2 y}{dx^2} = \frac{1}{c} \cosh \left(\frac{x}{c} \right) \]

\[\therefore \text{Radius of curvature} \]

\[\rho = \frac{\left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{3/2}}{\left(\frac{d^2 y}{dx^2} \right)} = \frac{1 + \sinh^2 \left(\frac{x}{c} \right)}{\left(\frac{1}{c} \cosh \left(\frac{x}{c} \right) \right)} \]

\[\rho = c \cosh^2 \left(\frac{x}{c} \right) = c \left(\frac{y^2}{c} \right) \]

[Using equation (i)]

\[\rho = \frac{y^2}{c} \]

Hence Proved.

Q.2 (c) Locate the stationary points of \(x^4 + y^4 - 2x^2 + 4xy - 2y^2 \) and determine their nature.

Sol. Given: \(u = x^4 + y^4 - 2x^2 + 4xy - 2y^2 \)

For maxima and minima of \(u \), we must have

\[\frac{\partial u}{\partial x} = 4x^3 - 4x + 4y \]

[... (ii)]

and

\[\frac{\partial u}{\partial y} = 4y^3 + 4x - 4y \]

[... (iii)]

Taking,

\[\frac{\partial u}{\partial x} = 0 \Rightarrow 4x^3 - 4x + 4y = 0 \]

\[x^3 - x + y = 0 \]

[... (iv)]

and

\[\frac{\partial u}{\partial y} = 0 \Rightarrow 4y^3 + 4x - 4y = 0 \]

\[y^3 + x - y = 0 \]

[... (v)]

Adding equation (iv) and (v), we get

\[x^3 + y^3 = 0 \Rightarrow (x + y)(x^2 - xy + y^2) = 0 \]

\[x + y = 0 \] but \(x^2 - xy + y^2 \neq 0 \)

\[x = -y \]

[... (vi)]
Putting in equation (ii), we get

\[x^3 - 2x = 0 \]

\[x = 0, \quad x = \sqrt{2} \]

\[\therefore y = 0, \quad y = -\sqrt{2}. \quad \text{[From equation (vi)]} \]

Thus the required stationary points are (0,0) and \((\sqrt{2}, -\sqrt{2})\).

Again partially differentiating equation (ii) w.r.t. \(x \) and \(y \), we get

\[r = \frac{\partial^2 u}{\partial x^2} = 12x^2 - 4 \quad \text{and} \quad s = \frac{\partial^2 u}{\partial x \partial y} = 4. \]

Partially differentiating equation (iii) w.r.t. \(y \), we get

\[t = \frac{\partial^2 u}{\partial y^2} = 12y^2 - 4. \]

When \(x = \sqrt{2}, \ y = -\sqrt{2} \), we have

\[r = 12(\sqrt{2})^2 - 4 = 20 > 0, \ s = 4 \quad \text{and} \quad t = 12(\sqrt{2})^2 - 4 = 20 \]

\[\therefore rt - s^2 = (20)(20) - (4)^2 = 384 > 0. \]

Therefore \(u \) is minimum at \((\sqrt{2}, -\sqrt{2})\).

When \(x = 0, \ y = 0 \), we have

\[r = 12(0)^2 - 4 = -4 < 0, \ s = 4 \quad \text{and} \quad t = 12(0)^2 - 4 = -4 \]

\[\therefore rt - s^2 = (-4)(-4) - (4)^2 = 16 - 16 = 0. \]

The condition is doubtful and further investigation is needed.

Q.3

(a) If \(u = \sec^{-1}\left(\frac{x^3 - y^3}{x + y}\right) \), then prove that

\[x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \cot u. \]

Sol.

Given: Function \(u = \sec^{-1}\left(\frac{x^3 - y^3}{x + y}\right) \)

\[\sec u = \frac{x^3 - y^3}{x + y} = \frac{x^3 \left[1 - \left(\frac{y}{x}\right)^3 \right]}{x \left[1 + \left(\frac{y}{x}\right) \right]} = \frac{x^2 \left[1 - \left(\frac{y}{x}\right)^3 \right]}{1 + \left(\frac{y}{x}\right)} \]

which is a homogeneous function of degree 2. Hence by Euler’s theorem we have

\[x \frac{\partial}{\partial x} (\sec u) + y \frac{\partial}{\partial y} (\sec u) = 2 \sec u \]

\[x \sec u \cdot \tan u \frac{\partial u}{\partial x} + y \sec u \cdot \tan u \frac{\partial u}{\partial y} = 2 \sec u. \]

Dividing by \(\sec u \cdot \tan u \) on both sides, we get

\[x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \cot u. \quad \text{Hence Proved.} \]

(b) The radius of a sphere is found to be 10 cm with a possible error of 0.02 cm. What is the relative error in computing the volume?

Sol.

Given: \(r = 10 \) cm and \(\delta r = 0.02 \) cm.

\[\therefore \text{Volume of sphere } V = \frac{4}{3} \pi r^3. \]

Taking log on both sides, we get
\[\log V = \log \left(\frac{4}{3} \right) + \log \pi + 3 \log r \]

Differentiating equation (i), we get

\[\frac{\delta V}{V} = 0 + 0 + 3 \left(\frac{\delta r}{r} \right) \]

\[\therefore \quad \frac{\delta V}{V} = \text{relative error in } V = 3 \left(\frac{0.02}{10} \right) = 0.006. \]

Thus, relative error in volume of sphere is 0.006.

Ans.

Q.3 (c) If \(x = r \sin \theta \cos \phi, \ y = r \sin \theta \sin \phi, \ z = r \cos \theta \), then show that \(\frac{\partial (x,y,z)}{\partial (r,\theta,\phi)} = r^2 \sin \theta \).

Sol. Given: Functions \(x = r \sin \theta \cos \phi, \ y = r \sin \theta \sin \phi \) and \(z = r \cos \theta \).

By the definition of Jacobian, we have

\[\frac{\partial (x,y,z)}{\partial (r,\theta,\phi)} = \begin{vmatrix} \sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\ r \sin \phi \cos \theta & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\ \cos \theta & -r \sin \theta & 0 \end{vmatrix} \]

\[\frac{\partial (x,y,z)}{\partial (r,\theta,\phi)} = \sin \theta \cos \phi (0 + r^2 \sin^2 \phi \cos \phi) - r \cos \theta \cos \phi (0 - r \sin \theta \cos \phi \sin \phi) + (-r \sin \theta \sin \phi) (-r \sin \theta \cos \phi - r \cos \theta \sin \phi) \]

\[\frac{\partial (x,y,z)}{\partial (r,\theta,\phi)} = r^2 \sin^3 \theta \cos^2 \phi + r^2 \sin^2 \theta \cos \phi \sin \theta + r^2 \sin \phi \cos \phi \sin \theta \]

Hence Proved.

Q.4 (a) Evaluate \(\lim_{n \to \infty} \left(\frac{1}{1+n^2} + \frac{4}{8+n^2} + \frac{9}{27+n^2} + \ldots + \frac{1}{2n} \right) \)

Sol. Given: \(I = \lim_{n \to \infty} \left(\frac{1}{1+n^2} + \frac{4}{8+n^2} + \frac{9}{27+n^2} + \ldots + \frac{1}{2n} \right) \)

The given series can be written as,

\[I = \lim_{n \to \infty} \left(\frac{1^2}{1^2+n^2} + \frac{2^2}{2^2+n^2} + \frac{3^2}{3^2+n^2} + \ldots + \frac{n^2}{n^2+n^2} \right) \]

The \(r \)th term of the series is given by,

\[(r) \text{th} \text{ term} = \frac{r^2}{n^2+r^2}, \text{ where } r \text{ varies from 1 to } n. \]
The required limit of sum \(\lim_{n \to \infty} \sum_{r=1}^{n} \frac{r^2}{n^3 + r^3} \)

\[
= \lim_{n \to \infty} \frac{1}{n^2} \sum_{r=1}^{n} \left(\frac{r^2}{1 + \frac{r^3}{n^3}} \right) = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \left(\frac{r}{n} \right)^2
\]

For the corresponding definite integral, we have

Lower limit = \(\lim_{n \to \infty} \left(\frac{r}{n} \right) \) for the first term

\[
\text{Lower limit} = \lim_{n \to \infty} \left(\frac{1}{n} \right) \quad [\because r = 1 \text{ for the first term}]
\]

i.e.,

Lower limit = 0.

Upper limit = \(\lim_{n \to \infty} \left(\frac{r}{n} \right) \) for the last term

\[
\text{Upper limit} = \lim_{n \to \infty} \left(\frac{n}{n} \right) \quad [\because r = n \text{ for the last term}]
\]

i.e.,

Upper limit = 1.

By summation of series, we get

\[
I = \int_{0}^{1} \frac{x^2}{1 + x^3} \, dx \quad [\because \frac{r}{n} = x \text{ and } \frac{1}{n} = dx]
\]

Putting \(x^3 = t \), so that \(x^2 \, dx = \frac{dt}{3} \)

\[
I = \frac{1}{3} \int_{0}^{1} \frac{dt}{t + 1} = \frac{1}{3} \left[\log(t + 1) \right]_{0}^{1} = \frac{1}{3} \left[\log 2 \right] - 0\]

\[
I = \frac{1}{3} \log 2.
\]

Ans.

Q.4 (b) Prove that \(\int_{-\infty}^{\infty} e^{-x^2} \, dx = \frac{\sqrt{\pi}}{a} \), \(a > 0 \).

Sol. Given:

\[
I = \int_{-\infty}^{\infty} e^{-x^2} \, dx
\]

\[
I = 2 \int_{0}^{\infty} e^{-x^2} \, dx \quad \ldots(i)
\]

Putting \(a^2 \cdot x^2 = y \), i.e., \(x = \frac{\sqrt{y}}{a} \), so that \(dx = \frac{dy}{2a\sqrt{y}} \), from equation (i), we get

\[
I = 2 \int_{0}^{\infty} e^{-y} \frac{1}{2a\sqrt{y}} \, dy
\]

\[
I = \frac{1}{a} \int_{0}^{\infty} e^{-y} y^{-\frac{1}{2}} \, dy
\]

\[
I = \frac{1}{a} \Gamma \left(\frac{1}{2} \right) = \frac{\sqrt{\pi}}{a}
\]

Hence Proved.

Q.4 (c) Express \(\int_{0}^{1} x^n (1-x)^m \, dx \) in terms of beta functions and hence evaluate \(\int_{0}^{1} x^n (1-x)^m \, dx \).
Mathematics - I
1st Year : Common to all Branches
Page 7

Sol. Given: \(I = \int_0^1 x^n (1-x^m)^p dx \)

Putting \(x^n = y \) i.e., \(x = y^{\frac{1}{n}} \), so that \(dx = \frac{1}{n} y^{\frac{1}{n}-1} dy \).

When \(x = 0 \) then \(y = 0 \) and when \(x = 1 \) then \(y = 1 \).

\[
\Rightarrow \int_0^1 x^n (1-x^m)^p dx = \frac{1}{n} \int_0^1 y^{\frac{m+1}{n}} (1-y)^{p+1} dy
\]

\[
\int_0^1 x^n (1-x^m)^p dx = \frac{1}{n} \beta\left(\frac{m+1}{n}, p+1\right) \quad \text{Ans.}
\]

Putting \(m = 5, n = 3 \) and \(p = 10 \) in equation (i), we get

\[
\int_0^1 x^5 (1-x^3)^{10} dx = \frac{1}{3} \beta\left(\frac{5+1}{3}, 10+1\right) = \frac{1}{3} \beta(2,11) = \frac{1}{3} \frac{\Gamma(2)\Gamma(11)}{\Gamma(13)} \quad \text{[\because \Gamma(n) = (n-1)!]}\]

\[
\int_0^1 y^3 (1-y^3)^{10} dy = \frac{1}{3} \frac{1!\times10!}{12!} = \frac{1}{3} \frac{10!}{12\cdot11\cdot10!}
\]

\[
\int_0^1 x^3 (1-x^3)^{10} dx = \frac{1}{396}.
\]

Q.5 (a) Evaluate \(\iiint_R y \, dx
\)

over the part of the plane bounded by the line \(y = x \) and the parabola \(y = 4x-x^2 \).

Sol. Given: \(I = \iiint_R y \, dx \).

The region of integration \(R \) is bounded by curve,

\(y = x \) \hspace{1cm} \text{... (ii)}

and\n
\(y = 4x-x^2 \) \hspace{1cm} \text{... (iii)}

Solving equation (ii) and (iii), we get

\(y = 4x-x^2 \Rightarrow x^2 - 3x = 0 \)

\(x = 0, \ x = 3 \)

\(\Rightarrow \ y = 0, \ y = 3 \) \hspace{1cm} \text{[From equation (ii)]}

Therefore, points of intersection of given curve are \((0, 0)\) and \((3, 3)\).

From the figure \(y \) varies from \(x \) to \(4x-x^2 \), whereas \(x \) varies from \(0 \) to \(3 \).

Hence the given double integral is,

\[
I = \iiint_R y \, dx = \int_0^3 \left[\int_{x=0}^{4x-x^2} y \, dy \right] \, dx
\]

\[
I = \int_0^3 \left[\frac{y^2}{2} \right]_{x=0}^{4x-x^2} \, dx
\]

\[
I = \frac{1}{2} \int_0^3 \left[(4x-x^2)^2 - (0)^2 \right] \, dx
\]

\[
I = \frac{1}{2} \int_0^3 \left[16x^2 - 8x^3 + x^4 \right] \, dx
\]

\[
I = \frac{1}{2} \left[\frac{5x^3 + x^5}{5} - 2x^4 \right]_{x=0}^{x=3}
\]

\[
I = \frac{1}{2} \left[\frac{405 + 243 - 162}{5} \right]
\]

\[
I = \frac{54}{5}
\]

\(\iiint_R y \, dx = \frac{54}{5} \). \hspace{1cm} \text{Ans.}

Q.5 (b) Evaluate \(\int_0^1 \int_0^{1-x} \int_0^{x+y} xyz \, dz \, dy \, dx \).
Sol. Given:

\[I = \int_{y=0}^{1} \int_{x=0}^{1-x-y} \int_{z=0}^{1-x-y} xyz \, dz \, dy \, dx \]

\[I = \int_{y=0}^{1} \int_{x=0}^{1-x-y} \int_{z=0}^{1-x-y} z \, dy \, dx \]

\[I = \int_{y=0}^{1} \int_{x=0}^{1-x-y} \left(\frac{z^2}{2} \right) \left(1-x-y \right) \, dy \, dx \]

\[I = \int_{y=0}^{1} \int_{x=0}^{1-x-y} \left(\frac{(1-x-y)^2}{2} \right) \, dy \, dx \]

\[I = \frac{1}{2} \int_{x=0}^{1} x \left(\int_{y=0}^{1-x} \left(1-x-y \right)^2 \, dy \right) \, dx \]

\[= \frac{1}{2} \int_{x=0}^{1} x \left(\int_{y=0}^{1-x} \left(1-x \right)^2 - 2(1-x)y + y^2 \right) \, dy \, dx \]

\[= \frac{1}{2} \int_{x=0}^{1} x \left(\frac{(1-x)^4}{2} - 2 \frac{(1-x)^4}{3} + \frac{(1-x)^4}{4} \right) \, dx \]

\[= \frac{1}{24} \int_{x=0}^{1} x(1-x)^4 \, dx \]

Putting \(1-x=t \), so that \(dx = -dt \)

\[I = \frac{1}{24} \int_{t=1}^{0} (1-t)t^4 (-dt) = \frac{1}{24} \int_{t=0}^{1} (t^4 - t^5) \, dt \]

\[= \frac{1}{24} \left[\frac{t^5}{5} - \frac{t^6}{6} \right]_{t=0}^{1} = \frac{1}{24} \left[\frac{1}{5} - \frac{1}{6} \right] = \frac{1}{24} \left[\frac{6}{30} \right] = \frac{1}{720} \cdot \text{Ans.} \]

Q.5 (c) Find the area enclosed by the parabolas \(y^2 = 4ax \) and \(x^2 = 4ay \).

Sol. Given: The equations of parabolas are

\[y^2 = 4ax \quad \text{... (i)} \]

and \[x^2 = 4ay \quad \text{... (ii)} \]

Squaring both sides in equation (ii), we get

\[x^4 = 16a^2 y^2 \]

\[x^4 = 16a^2 (4ax) \]

\[x(x^3 - 64a^3) = 0 \]

\[x = 0 \quad \text{and} \quad x^3 = 64a^3 \]

\[x = 0 \quad \text{and} \quad x = 4a \]

Putting in equation (i), we get

\[y = 0 \quad \text{and} \quad y = 4a \]

\[\therefore \] Required point of intersection are (0, 0) and (4a, 4a).

Here

(i) \(y \) varies from \(\frac{x^2}{4a} \) to \(\sqrt{4ax} \).

(ii) \(x \) varies from 0 to 4a.

\[\therefore \text{Required area is,} \]

\[A = \iint dx \, dy \]
\[A = \int_{-a}^{a} \sqrt{4ax - x^2} \, dx \frac{dy}{4a} \]

\[A = \int_{-a}^{a} \left(\frac{1}{\sqrt{4ax - x^2}} \right) dx = \int_{-a}^{a} \left(\frac{x^2}{4a} \right) dx \]

\[A = 2 \sqrt{a} \left[\frac{x^{3/2}}{3} \right]_{0}^{a} - \frac{1}{4a} \left[\frac{x^3}{3} \right]_{0}^{a} \]

\[A = \frac{32}{3} a^2 - \frac{16}{3} a^2 \]

The required area is \(A = \frac{16}{3} a^2 \) square units.

Q.6 (a) Evaluate \(\int_{b}^{a} e^x \, dx \) as limit of sum.

Sol. Given : \(f(x) = e^x \).

We know that by definition of definite integral as limit of sum,

\[\int_{a}^{b} f(x) \, dx = \lim_{h \to 0} \sum_{i=0}^{n-1} f(a + rh) \]

\[\int_{a}^{b} e^x \, dx = \lim_{h \to 0} \sum_{i=0}^{n-1} e^{x_i} \]

\[\int_{a}^{b} e^x \, dx = \lim_{h \to 0} \left[e^x + e^{x+2h} + e^{x+3h} + \ldots + e^{(n-1)h} \right] \]

\[\int_{a}^{b} e^x \, dx = \lim_{h \to 0} \left[e^x + e^{2h} + \ldots + e^{(n-1)h} \right] \]

\[\int_{a}^{b} e^x \, dx = \lim_{h \to 0} e^x \left[\frac{1}{(e^h - 1)} \right] \]

\[\therefore \quad S_n = \frac{a(r^n - 1)}{r - 1}, r > 1 \]

\[\int_{a}^{b} e^x \, dx = e^x \left(e^{b-a} - 1 \right) \frac{d}{dh} \left(e^x \right) \]

\[\therefore \quad nh = b - a \]

[Using L’ Hospital’s rule]

\[\int_{a}^{b} e^x \, dx = (e^b - e^a), \lim_{h \to 0} \frac{1}{e^x} \]

\[\int_{a}^{b} e^x \, dx = e^b - e^a. \quad \text{Ans.} \]

Q.6 (b) Express in terms of the gamma function : \(\int_{0}^{\infty} x^n e^{-x^2} \, dx. \)

Sol. Given : \(I = \int_{0}^{\infty} x^n e^{-x^2} \, dx \)

Putting \(x^2 = t, \) i.e., \(x = t^{1/2}, \) so that \(dx = \frac{1}{2} t^{-1/2} \, dt, \) we get

\[I = \int_{0}^{\infty} x^n e^{-x^2} \, dx = \frac{1}{2} \int_{0}^{\infty} t^{n/2} e^{-t} \, \frac{1}{2} t^{-1/2} \, dt \]

\[I = \frac{1}{2} \Gamma \left(\frac{n+1}{2} \right) e^{-c/m} \quad \text{where} \quad c = k^2 \text{ and } m = \frac{n+1}{2} \]

\[I = \frac{1}{2} \Gamma \left(\frac{n+1}{2} \right) e^{-c/m} \]

\[\therefore \quad \int_{0}^{\infty} e^{-y} \, dy = \frac{\Gamma n}{c^n} \]
\[I = \frac{\Gamma m}{2k^{2m}} \quad \therefore c = k^2 \]
\[I = \frac{1}{2k^{n+1}} \Gamma \left(\frac{n+1}{2} \right) \quad \therefore m = \frac{n+1}{2} \]

Hence Proved.

Q.6 (c) Change the order of integration in \[\int_0^1 \int_{2-x}^{2-x} xy \, dx \, dy \] and hence evaluate the same.

Sol.

Given: \[I = \int_0^1 \int_{2-x}^{2-x} xy \, dx \, dy \] \(\cdots \) (i)

We draw the bounded region from the given curves:
\[x = 0, x = 1, y = x^2 \text{ and } y = 2 - x. \]

The possible points for bounded region are: \((0, 0), (1, 1)\) and \((0, 2)\).

On changing the order of integration, integrate first w.r.t. \(x\) by taking two strips parallel to \(x\)-axis say, \(PQ\) and \(RS\).

Limit:
1. \(x\) varies from \(R(x = 0)\) to \(S(x = \sqrt{y})\) and \(y\) varies from \(y = 0\) to \(y = 1\).
2. \(x\) varies from \(P(x = 0)\) to \(Q(x = 2 - y)\) and \(y\) varies from \(y = 0\) to \(y = 2\).

\[I = \int_{x=0}^{x=1} \int_{y=0}^{y=x^2} xy \, dy \, dx + \int_{x=0}^{x=1} \int_{y=2-x}^{y=2-x} xy \, dy \, dx \]
\[I = \frac{1}{2} \int_{x=0}^{x=1} y^2 \, dx + \int_{x=0}^{x=1} \left[\frac{1}{2} \right] y^2 \, dx \]
\[I = \frac{1}{2} \left[\frac{y^3}{3} \right]_0^2 + \frac{1}{2} \left[\frac{4y^3}{3} \right]_0^2 \]
\[I = \frac{3}{8} \cdot \text{Ans.} \]

Q.7 (a) Verify Rolle’s theorem, where \(f(x) = 2x^3 + x^2 - 4x - 2 \).

Sol.

Given: The function \(f(x) = 2x^3 + x^2 - 4x - 2 \).

Since a polynomial function is everywhere continuous and differentiable, so the given function is continuous as well as differentiable in every interval.

To identify the interval, we first solve the equation, \(f(x) = 0 \).

\[2x^3 + x^2 - 4x - 2 = 0 \]
\[x^2 (2x+1) - 2 (2x+1) = 0 \]
\[(x^2 - 2) (2x+1) = 0 \]
\[x^2 = 2 \quad \text{or} \quad x = -\frac{1}{2} \]
\[x = \pm \sqrt{2} \quad \text{or} \quad x = -\frac{1}{2}. \]

So, we consider the given function in \([-\sqrt{2}, \sqrt{2}].\)

Clearly, \(f(-\sqrt{2}) = f(\sqrt{2}) = 0 \).

Thus, all the conditions of Rolle’s theorem are satisfied. So there must exist at least one point \(c \in (-\sqrt{2}, \sqrt{2}) \) such that \(f’(c) = 0 \).

But, \(f’(x) = 6x^2 + 2x - 4 \)
Mathematics - I
1st Year : Common to all Branches

Page 11

\[f'(c) = 0 \Rightarrow 6c^2 + 2c - 4 = 0 \]
\[2(3c-2)(c+1) = 0 \]
\[c = \frac{2}{3} \quad \text{or} \quad c = -1. \]

Clearly, both these points lie in \((-\sqrt{2}, \sqrt{2})\).

Hence, Rolle’s theorem is verified.

Hence Proved.

Q.7 (b) If \(u = f(y-z, z-x, x-y) \), prove that \(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0. \)

Sol. Given: Function \(u = f(y-z, z-x, x-y) \).

Let \(X = y-z, \ Y = z-x \) and \(Z = x-y \) \(\cdots (i) \)

Then \(u = f(X,Y,Z) \), where each one of \(X, Y, Z \) is a function of \(x, y, z \).

Partially differentiating equation \((i) \) w.r.t. \(x, y \) and \(z \) respectively, we get

\[\frac{\partial X}{\partial x} = 1, \quad \frac{\partial Y}{\partial x} = 0, \quad \frac{\partial Z}{\partial x} = 1. \]

and

\[\frac{\partial X}{\partial y} = 0, \quad \frac{\partial Y}{\partial y} = 1, \quad \frac{\partial Z}{\partial y} = 0. \]

Now

\[\frac{\partial u}{\partial x} = \frac{\partial u}{\partial X} \frac{\partial X}{\partial x} + \frac{\partial u}{\partial Y} \frac{\partial Y}{\partial x} + \frac{\partial u}{\partial Z} \frac{\partial Z}{\partial x} \]

\[\frac{\partial u}{\partial y} = \frac{\partial u}{\partial X} \frac{\partial X}{\partial y} + \frac{\partial u}{\partial Y} \frac{\partial Y}{\partial y} + \frac{\partial u}{\partial Z} \frac{\partial Z}{\partial y} \]

\[\frac{\partial u}{\partial z} = \frac{\partial u}{\partial X} \frac{\partial X}{\partial z} + \frac{\partial u}{\partial Y} \frac{\partial Y}{\partial z} + \frac{\partial u}{\partial Z} \frac{\partial Z}{\partial z} \]

Adding equations \((ii), (iii) \) and \((iv) \), we get

\[\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0. \]

Hence Proved.

Q.7 (c) Trace the curve \(y^2(2a-x) = x^3 \).

Sol. Given: The equation of curve

\[y^2(2a-x) = x^3 \]
\(\cdots (i) \)

The tracing of curve have following steps:

(i) Symmetry: Here in equation \((i) \) all power of \(y \) are even, hence the curve is symmetrical about the \(x \)-axis.

(ii) Origin: There is no constant term in this equation. By putting \(x = 0 \), we have \(y = 0 \) the curve passes through the origin.

The tangents at the origin are \(y = 0 \). [Equating to zero the lowest degree terms.]

\[\therefore \text{Origin is a cusp.} \]

(iii) Points of intersection:

When \(x = 0 \) then \(y = 0 \).
When \(y = 0 \) then \(x = 0 \).

i.e., the curve meets the co-ordinate axis only at origin.

(iv) Asymptotes: Equating coefficient of higher power of \(x \) and \(y \) to 0. We have the asymptotes as follows.

The curve has an asymptote \(x = 2a \) (parallel to \(y \)-axis).

(v) Region: We have, \(y^2 = x^3/(2a-x) \) \(\Rightarrow \ y = \sqrt[3]{x^3/(2a-x)} \).

When \(x \) is –ve, \(y^2 \) is –ve (i.e. \(y \) is imaginary) so that no portion of the curve lies to the left of the \(y \)-axis. Also when \(x > 2a, y^2 \) is again –ve, so that no portion of the curve lies to the right of the line \(3x = 2a \).

Hence the shape of the curve is as shown in below figure. This curve is known as **cissoids**.