
 

RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL 

Credit Based Grading System 

Computer Science and Engineering VII-Semester 

CS-7002 Compiler Design 
 

Unit-I Introduction to compiling & Lexical Analysis 

Introduction of Compiler, Major data Structure in compiler, BOOT Strapping & Porting, Compiler 

structure: analysis-synthesis model of compilation, various phases of a compiler, Lexical analysis: 

Input buffering , Specification & Recognition of Tokens, LEX. 
 

Unit-II Syntax Analysis &Syntax Directed Translation 

Syntax analysis: CFGs, Top down parsing, Brute force approach, recursive descent parsing, 

transformation on the grammars, predictive parsing, bottom up parsing, operator precedence parsing, 

LR parsers (SLR, LALR, LR),Parser generation. Syntax directed definitions: Construction of Syntax 

trees, Bottom up evaluation of S-attributed definition, L-attribute definition, Top down translation, 

Bottom Up evaluation of inherited attributes Recursive Evaluation, Analysis of Syntax directed 

definition. 
 

Unit-III Type Checking & Run Time Environment 

Type checking: type system, specification of simple type checker, equivalence of expression, types, 

type conversion, overloading of functions and operations, polymorphic functions. Run time 

Environment: storage organization, Storage allocation strategies, parameter passing, dynamic storage 

allocation , Symbol table 
 

Unit –IV Code Generation 

Intermediate code generation: Declarations, Assignment statements, Boolean expressions, Case 

statements, Back patching, Procedure calls Code Generation: Issues in the design of code generator, 

Basic block and flow graphs, Register allocation and assignment, DAG representation of basic blocks, 

peephole optimization, generating code from DAG. 
 

Unit –V Code Optimization 

Introduction to Code optimization: sources of optimization of basic blocks, loops in flow graphs, dead 

code elimination, loop optimization, Introduction to global data flow analysis, Code Improving 

transformations ,Data flow analysis of structure flow graph Symbolic debugging of optimized code. 
 

List of Experiments: 

1. Develop a lexical analyzer to recognize a few patterns. 
2. Write a programme to parse using Brute force technique of Topdown parsing. 
3. Develop LL (1) parser (Construct parse table also). 
4. Develop an operator precedence parser (Construct parse table also) 

5. Develop a recursive descent parser 
6. Write a program for generating for various intermediate code forms 

i) Three address code ii) Polish notation 
7. Write a program to simulate Heap storage allocation strategy 
8. Generate Lexical analyzer using LEX 
9. Generate YACC specification for a few syntactic categories. 
10. Given any intermediate code form implement code optimization techniques 

11. Study of an Object Oriented Compiler. 
 

References: 

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools , Pearson 
Education 

2 Raghavan, Compiler Design, TMH Pub. 

3. Louden. Compiler Construction: Principles and Practice, Cengage Learning 
4. A. C. Holub. Compiler Design in C , Prentice-Hall Inc., 1993. 
5. Mak, writing compiler & Interpreters, Willey Pub. 

http://www.rgpvonline.com downloaded from rgpv official site dt 02072018


