
CS-701 – Compiler Design 
 

Unit-I Introduction to compiling & Lexical Analysis 
Introduction of Compiler, Major data Structure in compiler, BOOT Strapping & Porting, Compiler 

structure: analysis-synthesis model of compilation, various phases of a compiler, Lexical analysis: 

Input buffering , Specification & Recognition of Tokens, LEX. 
 

Unit-II Syntax Analysis &Syntax Directed Translation 
Syntax analysis: CFGs, Top down parsing, Brute force approach, recursive descent parsing, 

transformation on the grammars, predictive parsing, bottom up parsing, operator precedence 

parsing,LR parsers (SLR,LALR, LR),Parser generation.Syntax directed definitions: Construction 

of Syntax trees, Bottom up evaluation of S-attributed definition, L-attribute definition, Top down 

translation, Bottom Up evaluation of inherited attributes Recursive Evaluation, Analysis of Syntax 

directed definition. 
 

Unit-III Type Checking & Run Time Environment 
Type checking: type system, specification of simple type checker, equivalence of expression, 

types, type conversion, overloading of functions and operations, polymorphic functions. Run 

time Environment: storage organization, Storage allocation strategies, parameter passing, dynamic 

storage allocation , Symbol table 

 

Unit –IV Code Generation 
Intermediate code generation: Declarations, Assignment statements, Boolean expressions, Case 

statements, Back patching, Procedure calls Code Generation: Issues in the design of code 

generator, Basic block and flow graphs, Register allocation and assignment, DAG representation 

of basic blocks, peephole optimization, generating code from DAG. 

 

Unit –V Code Optimization 
Introduction to Code optimization: sources of optimization of basic blocks, loops in flow graphs, 

dead code elimination, loop optimization, Introduction to global data flow analysis, Code 

Improving transformations ,Data flow analysis of structure flow graph Symbolic debugging of 

optimized code. 

References: 
1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and 

Tools , Pearson Education 

2 Raghavan, Compiler Design, TMH Pub. 

3. Louden. Compiler Construction: Principles and Practice, Cengage Learning 

4. A. C. Holub. Compiler Design in C , Prentice-Hall Inc., 1993. 

5. Mak, writing compiler & Interpreters, Willey Pub. 

List of Experiments: 

 Develop a lexical analyzer to recognize a few patterns. 

 Write a programme to parse using Brute force technique of Topdown parsing. 

 Develop LL (1) parser (Construct parse table also). 

 Develop an operator precedence parser (Construct parse table also) 

 Develop a recursive descent parser 

 Write a program for generating for various intermediate code forms i) Three address code ii) 

Polish notation 

 Write a program to simulate Heap storage allocation strategy 

 Generate Lexical analyzer using LEX 

 Generate YACC specification for a few syntactic categories. 

 Given any intermediate code form implement code optimization techniques 

 Study of an Object Oriented Compiler. 


