EC 701 Elective - I (EC - 7011 Wireless Communication)

Unit-I Introduction

Applications and requirements of wireless services: history, types of services, requirements for the services, economic and social aspects.

Technical challenges in wireless communications: multipath propagation, spectrum limitations, limited energy, user mobility, noise and interference-limited systems.

Propagation mechanism: free space loss, reflection and transmission, diffraction, scattering by rough surfaces, wave guiding.

Unit-II

Wireless Propagation channels

Statistical description of the wireless channel: time invariant and variant two path models, small-scale fading with and without a dominant component, Doppler spectra, temporal dependence of fading, large scale fading.

Wideband and directional channel characteristics: causes of delay dispersion, system theoretic description of wireless channels, WSSUS model, condensed parameters, ultra wideband channels, directional description.

Unit-III

Channel models: Narrowband, wideband and directional models, deterministic channel-modeling methods. **Channel sounding:** Introduction, time domain measurements, frequency domain analysis, modified measurement methods, directionally resolved measurements.

Antennas: Introduction, antennas for mobile stations, antennas for base stations.

Unit-IV

Transceivers and signal processing: Structure of a wireless communication link: transceiver block structure, simplified models. Modulation formats, demodulator structure, error probability in AWGN channels, error probability in flat-fading channels, error probability in delay and frequency-dispersive fading channels.

Unit V

Diversity: Introduction, microdiversity, macrodiversity and simulcast, combination of signals, error probability in fading channels with diversity reception, transmit diversity.

Equalizers: Introduction, linear equalizers, decision feedback equalizers, maximum likelihood sequence estimation (Viterbi detector), comparison of equalizer structures, fractional spaced equalizers, blind equalizers.

References:

- 1. Molisch: Wireless Communications, Wiley India.
- 2. Taub and Schilling: Principles of Communication Systems, TMH.
- 3. Haykin: Mordern Wireless Communication, Pearson Education.
- 4. Upena Dalal: Wireless Communication, Oxford University Press.
- 5. Rappaport: Wireless Communication, Pearson Education.
- 6. Price: Wireless Communication and Networks, TMH.
- 7. Palanivelu and Nakkereeran: Wireless and Mobile Communication, PHI Learning.
- 8. Chidambara Nathan: Wireless Communication, PHI Learning.