EX - 305 Network Analysis

Unit I

Introduction to circuit elements R,L,C and their characteristics in terms of linearity & time dependant nature, voltage & current sources controlled & uncontrolled sources KCL and KVL analysis, Nodal & mesh analysis, analysis of magnetically coupled circuits, Transient analysis: Transients in RL, RC&RLC Circuits, initial conditions, time constants. Steady state analysis- Concept of phasor & vector, impedance & admittance, Network topology, concept of Network graph, Tree, Tree branch & link, Incidence matrix, cut set and tie set matrices, dual networks, Dot convention, coupling coefficient, tuned circuits, Series & parallel resonance.

Unit II

Network Theorems for AC & DC circuits- Thevenins & Norton's, Superpositions, Reciprocity, Compensation, Substitution, Maximum power transfer, and Millman's theorem, Tellegen's theorem, problems with dependent & independent sources.

Unit III

Frequency domain analysis – Laplace transform solution of Integro-differential equations, transform of waveform synthesized with step ramp, Gate and sinusoidal functions, Initial & final value theorem, Network Theorems in transform domain

Unit IV

Concept of signal spectra, Fourier series co-efficient of a periodic waveform, symmetries as related to Fourier coefficients, Trigonometric & Exponential form of Fourier series.

Unit V

Network function & Two port networks – concept of complex frequency, Network & Transfer functions for one port & two ports, poles and zeros, Necessary condition for driving point & transfer function. Two port parameters – Z,Y, ABCD, Hybrid parameters, their inverse & image parameters, relationship between parameters, Interconnection of two ports networks, Terminated two port networks.

References:

- 1. M.E. Van Valkenburg, Network Analysis, (PHI)
- 2. F.F.Kuo, Network Analysis.
- 3. Mittal GK; Network Analysis; Khanna Publisher
- 4. Mesereau and Jackson; Circuit Analysis- A system Approach; Pearson.
- 5. Sudhakar & Pillai; Circuit & Networks- Analysis and Synthesis; TMH
- 6. Hayt W.H. & J.E. Kemmerly; Engineering Circuit Analysis; TMH
- 7. Decarlo lin; Linear circuit Analysis; Oxford
- 8. William D Stanley: Network Analysis with Applications, Pearson Education
- 9. Roy Choudhary D; Network and systems; New Age Pub
- 10. Charles K. Alexander & Matthew N.O. Sadiku: Electrical Circuits: TMH
- 11. Chakraborti :Circuit theory: Dhanpat Rai
- 12. B.Chattopadhyay & P.C.Rakshit; Fundamental of Electrical circuit theory; S Chand
- 13. Nilson & Riedel, Electric circuits; Pearson

List of experiments (Expandable):

- 1. To Verify Thevenin Theorem.
- 2. To Verify Superposition Theorem.
- 3. To Verify Reciprocity Theorem.
- 4. To Verify Maximum Power Transfer Theorem.
- 5. To Verify Millman's Theorem.
- 6. To Determine Open Circuit parameters of a Two Port Network.
- 7. To Determine Short Circuit parameters of a Two Port Network.
- 8. To Determine A,B, C, D parameters of a Two Port Network
- 9. To Determine h parameters of a Two Port Network
- 10. To Find Frequency Response of RLC Series Circuit.
- 11. To Find Frequency Response of RLC parallel Circuit.
- NOTE- All experiments (wherever applicable) should be performed through the following steps.
- **Step 1**: Circuit should be designed/ drafted on paper.
- **Step 2**: Where ever applicable the designed/drafted circuit should be simulated using Simulation S/W (TINA-V7/ PSPICE/ Labview/ CIRCUIT MAKER etc.).
- **Step 3**: The designed/drafted circuit should be tested on the bread board and compare the results with the simulated results.
- **Step 4**: Where ever required the bread board circuit should be fabricated on PCB.