AU/IP/ME-405 Fluid Mechanics **Unit-I** Review of Fluid Properties: Engineering units of measurement, mass, density, specific weight, volume and gravity, surface tension, capillarity, viscosity, bulk modulus of elasticity, pressure and vapor pressure. Fluid Static's: Pressure at a point, pressure variation in static fluid, Absolute and gauge pressure, manometers, Forces on plane and curved surfaces (Problems on gravity dams and Tainter gates); buoyant force, Stability of floating and submerged bodies, Relative equilibrium. **Unit-II** Kinematics of Flow: Types of flow-ideal & real, steady & unsteady, uniform & non-uniform, one, two and three dimensional flow, path lines, streak-lines, streamlines and stream tubes; continuity equation for one and three dimensional flow, rotational & irrotational flow, circulation, stagnation point, separation of flow, sources & sinks, velocity potential, stream function, flow netstheir utility & method of drawing flow nets. **Unit-III** Dynamics of Flow: Euler's equation of motion along a streamline and derivation of Bernoulli's equation, application of Bernoulli's equation, energy correction factor, linear momentum equation for steady flow; momentum correction factor. The moment of momentum equation, forces on fixed and moving vanes and other applications. Fluid Measurements: Velocity measurement (Pitot tube, Prandtl tube, current meters etc.); flow measurement (orifices, nozzles, mouth pieces, orifice meter, nozzle meter, venturi-meter, weirs and notches). **Unit-IV** Dimensional Analysis and Dynamic Similitude: Dimensional analysis, dimensional homogeneity, use of Buckingham-pi theorem, calculation of dimensionless numbers, similarity laws, specific model investigations (submerged bodies, partially submerged bodies, weirs, spillways, rotodynamic machines etc.) **Unit-V** Laminar Flow: Introduction to laminar & turbulent flow, Reynolds experiment & Reynolds number, relation between shear & pressure gradient, laminar flow through circular pipes, laminar flow between parallel plates, laminar flow through porous media, Stokes law, lubrication principles. ## References: - - 1. Modi & Seth; Fluid Mechanics; Standard Book House, Delhi - 2. Streeter VL, Wylie EB, Bedford KW; Fluid Mechanics; TMH - 3. Som and Biswas; Fluid Mechnics and machinery; TMH - 4. Cengal; Fluid Mechanics; TMH - 5. White; Fluid Mechanics; TMH - 6. Gupta; Fluid Mechanics; Pearson - 7. JNIK DAKE; Essential of Engg Hyd; Afrikan Network & Sc Instt. (ANSTI) - 8. R Mohanty; Fluid Mechanics; PHI ## List of Experiments (Pl. expand it): - 1. To determine the local point pressure with the help of pitot tube. - 2. To find out the terminal velocity of a spherical body in water. - 3. Calibration of Orifice meter and Venturi meter - 4. Determination of Cc, Cv, Cd of Orifices - 5. Calibration of Nozzle meter and Mouth Piece - 6. Reynolds experiment for demonstration of stream lines & turbulent flow - 7. Determination of meta-centric height - 8. Determination of Friction Factor of a pipe - 9. To study the characteristics of a centrifugal pump. - 10. Verification of Impulse momentum principle.