RGPV JUN 2020 SOLUTIONS NEW Q 1.Write statement of Rolle’s theorem and explain their geometrical meaning. Q.2 Discuss maxima and minima of function f(x,y)=x3-4xy+2y2 Q.3 if u=sin-1((x^2+y^2)/(x+y)). then show that x(du/dx)+y(du/dy)=tan u. RGPV NOV 18 Q.4 Discuss the maxima and minima of the function x3+y3 - 3axy RGPV NOV 18 Q.5 Evaluate lim n->∞ (1/n+1 + 1/n+2 + ----- + 1/2n) RGPV NOV 18 Q.6 Prove that Β(m,n)= m! n! / (m+n)! RGPV NOV 18 Q.7 Discuss the maxima and minima of the function u=x^3y^2 (1-x-y) RGPV NOV 18 Q.8 Expand logex in power of x and hence evaluate loge (1.1) correct to four decimal places. RGPV NOV 18 Q.9 Verify Lagrange's Mean value theorem for the function f(x)=2x2 - 7x+10 in [2, 5]. RGPV NOV 18