Note: i) Attempt any five questions.

Roll No

AU-702(B)-CBGS

B.Tech., VII Semester

Examination, December 2020

Choice Based Grading System (CBGS)

Heat and Mass Transfer

Time : Three Hours

Maximum Marks : 70

	ii) All questions carry equal marks.				
1.	a)	Write down the significance of Reynold's and Nusse number?	lt 7		
	b)	What is a radiation shield?	7		
2.	a)	What is intensity of radiation?	7		
	b)	what are the use of heat pipe?	/		
3.	a)	Counter flow heat exchanger most preferred why?	7		
	b)	Give the classification of heat exchangers.	1		
4.	a)	Define effectiveness of a heat exchanger. Derive a expression for the effectiveness of a double pipe paralle	n el		
	b)	flow heat exchanger. State the assumptions made.	'/ m		
	0)	running through it, the flow rates are 10 and 25 kg/mi respectively. Inlet temperatures are 75° C and 25° C o	n		
		hot and cold sides. The exit temperature on the hot side should not exceed 50° C. Assume $h = h = 600 W/m^2 K$	le C		
		Calculate the area of heat exchanger using E-NT	U		
		approach.	7		

AU-702(B)-CBGS PTO

5.	a) b)	Define emissivity, absorptivity and reflectivity. Describe the phenomenon of radiation from real surface	7 es. 7
6.	a) b)	State and prove the Kirchhoff's law of radiation. State and prove the Stefan - Boltzmann law.	7 7
7.	Lis	t the dimensionless numbers. Explain any two in detail. 1	14
8.	a) b)	What is Fourier's Law of heat conduction? Explain wi suitable example What is Newtonian heating or cooling process?	th 7 7

[2]

AU-702(B)-CBGS