	Roll No
Total No. of Questions: 8]	[Total No. of Printed Pages : 2

AU/ME-7001-CBGS

B.E. VII Semester

Examination, June 2020

Choice Based Grading System (CBGS) Mechanical Vibrations

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions.

- ii) All questions carry equal marks.
- 1. Define the following characteristics of vibrations:
 - i) Vibration displacement
 - ii) Vibration velocity
 - iii) Vibration acceleration
 - iv) Periodic motion
 - v) Time period
 - vi) Frequency
 - vii) Amplitude
- 2. A machine member is in the form of a cantilever beam of length L, moment of inertia I and modulus of elasticity E and carries a mass *m* at it's free end. Find the natural frequency of lateral vibrations in the plane of paper when the beam has negligible mass. If the cantilever has a rectangular section 5 cm deep and 2.5 cm deep. Find the ratio of frequency of free vibrations in vertical plane to that of an horizontal plane.
- 3. a) What assumptions are made in finding the natural frequency of a single degree of freedom using energy method?

AU/ME-7001-CBGS

PTO

- b) A spring mass system has a natural frequency of 10 Hz. When the spring constant is reduced by 800 N/m, the frequency is altered by 45 percent. Find the mass and spring constant of original system.
- 4. a) What happens to the response of an undamped system at resonance?
 - b) Consider a spring mass system with k = 4000 N/m and m = 10 kg subject to harmonic face $F(t) = 400 \cos 10t$ Newton. Find and plot the total response of the system under the conditions $x_0 = 0.1$ m and $\dot{x}_0 = 0$ and $\ddot{x}_0 = 10$ m/sec.
- 5. a) What do you mean by a vibrating system with two degree of freedom? Explain with example.
 - b) Find the natural frequency of the car with following condition: Total mass of the car is 300 kg, wheel base 3.0 m and radius of gyration is 1.0 m and spring constants of the front and rear springs are 70×10³ N/m each.
- 6. Derive an expression for critical speed of a light flexible shaft with an unbalanced disk at the centre of shaft with damping.
- 7. Find the natural frequency of a three mass-spring system connected in series and hanging vertically.
- 8. Write short notes on any two:
 - a) Vibration isolation
 - b) Torsional vibration
 - c) Vibration measurement

AU/ME-7001-CBGS