2000

OR

Verify Cayley - Hamilton theorem for the matrix.

$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}. \text{ Hence compute A}^{-1}.$$

rgpvonline.com

Unit - V

- 5. a) Define the following with examples:
 - i) Union of two fuzzy set
 - ii) Intersection of two fuzzy set
 - b) Define the following:
 - i) Simple graph

- ii) Multigraph
- iii) Degree of vertex
- iv) Isolated vertex
- c) Prove that the number of vertices of odd degree in a graph is always even.
- d) If $(B, +, \bullet, ')$ be a Boolean algebra and a, b be any two elements of B. Then show that $(a+b)' = a' \cdot b' \ \forall \ a, b \in B$.

OR ·

Write the function f(x, y, z) = x.y' + x.z + x.y into conjunctive normal form in three variables.

BE-102

Roll No

BE - 102

B.E. I & II Semester

Examination, December 2015

Engineering Mathematics-I

Time: Three Hours

Maximum Marks: 70

- **Note:** i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each questions are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

- a) Find the percentage error in the area of an ellipse if 1% error is made in measuring the major and minor axes.
 - b) Discuss the maxima and minima of the function x^3+y^3-3axy rgpvonline.com
 - c) Find the radius of curvature at any point of the curve $x = a \cos t$, $y = b \sin t$
 - d) Use Taylor's theorem to prove that

 $\tan^{-1}(x+h) = \tan^{-1}x + (h\sin\theta) \cdot \frac{\sin\theta}{1} - (h\sin\theta)^2 \cdot \frac{\sin 2\theta}{2}$

$$+(h\sin\theta)^3\frac{\sin 3\theta}{3}-\dots+(-1)^{n-1}(h\sin\theta)^n\frac{\sin n\theta}{n}+\dots$$

Where $\theta = \cot^{-1}x$.

OR

Expand excosx by Maclaurin's theorem. rgpvonline.com

Unit - II

- 2. a) Find the limit when $n \to \infty$ of the series $\sum_{r=1}^{n} \frac{n^2}{(n^2 + r^2)^{3/2}}$.
 - b) Evaluate $\int_{0}^{1} \left(\log \frac{1}{y} \right)^{n-1} dy$.
 - c) Change the order of integration in $\int_0^q \int_y^a \frac{x dx dy}{x^2 + y^2}$ and hence evaluate the same.
 - d) Prove that $\beta(m,n) = \frac{\lceil m \rceil n}{\lceil (m+n) \rceil}, m > 0, n > 0$.

OR

Find the volume bounded by the paraboloid $x^2+4y^2+z=4$ and the xy-plane. Also sketch the curve.

Unit - III

- 3. a) Solve $(y\cos x + \sin y + y)dx + (\sin x + x\cos y + x)dy = 0$
 - b) Solve $p^2 + 2py \cot x y^2 = 0$.
 - c) Solve $(D^2 + 2D + 1)y = x\cos x$.
 - d) Solve $x^2 \frac{d^2 y}{dx^2} + 5x \frac{dy}{dx} + 4y = x \log x$.

OR

Solve by the method of variation of parameters

$$\frac{d^2y}{dx^2} + y = \csc x \quad \text{rgpvonline.com}$$

Unit-IV

4. a) Find the rank of the matrix A, where $A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 3 & -2 \\ 2 & 4 & -3 \end{pmatrix}$. If

 λ be an eigen value of a non singular matrix A.

- b) Show that λ^{-1} is an eigen value of A^{-1} .
- c) Solve the equations:

$$x_1+3x_2+2x_3=0$$
, $2x_1-x_2+3x_3=0$, $3x_1-5x_2+4x_3=0$, $x_1+17x_2+4x_3=0$.

d) Find the eigen values and eigen vectors of the matrix.

$$A = \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix} -$$

rgpvonline.com