Total No. of Questions: 10.] [Total No. of Printed Pages: 3

BE-201(GS)

B. E. (First/Second Semester) EXAMINATION, June, 2011

(Common for all Branches)

ENGINEERING PHYSICS

Time: Three Hours

Maximum Marks: 70

Minimum Pass Marks: 22 (D Grade)

Note: Attempt all questions. Use standard values of physical constants wherever required. All questions carry equal marks.

Unit-I

- 1. (a) Obtain the expression for Compton shift in wavelength of incident radiation in Compton scattering process. 10
 - (b) The momentum of an electron is $5\times 10^{-27}\,\mathrm{kg/s}$ and is measured to an acccuracy of 0.003%. Calculate uncertainty in determining the position of the electron. 4

Or

- 2. (a) Deduce time dependent and time independent Schrödinger wave equations.
 - (b) Define phase and group velocities.

Unit-II

- 3. (a) Discuss Newton's rings experiment and prove that the radius of nth dark ring is $r_n \propto \sqrt{n}$.
 - (b) Discuss Brewster's law.

4

P. T. O.

			O)
	-	[2] BE-201(G	5)
		Or	
4.	(a)	Write short notes on the following:	10
	(~)	(i) Diffraction grating	
		(ii) Nicol prism	
	(b)	Yellow light ($\lambda = 589 \text{ nm}$) illuminates a Michelson will	on's
		interferrometer. How many bright iringes will	4
		counted as the mirror is moved through 1 cm.	٦.
		Unit – III	
5.	(a)	Explain in detail liquid drop model and various te	rms 10
		of semi-empirical mass formula.	4
	(b)	Briefly discuss Geiger-Muller counter.	4
,		Or	
6.	(a)	Explain construction and working of Bainbridge	mass
	()	spectrograph.	10
	(b)	Briefly discuss cyclotron.	4
		Unit – IV	
7	(a)	Discuss salient features of Kronig-Penny model.	10
	(b)	Explain how complex permittivity arises in dielect	trics.
	. (0)		4
	٠,	Or	
. 0	(0)	Write short notes on the following:	10
8	. (a)	(i) Effective mass	
		(ii) Superconductivity	
	(h) What are potential applications of Hall effect?	4
	(D	Unit – V	
			aseous
9). (a		10
		laser.	

[3]

(b) Derive expression for numerical aperture of a step index optical fiber.

Or

- 10. (a) Discuss various types of optical fibers and loss mechanisms in optical fibers.
 - (b) What is population inversion in lasers and how is it

BE-201(GS)

38,700