Total No. of Questions :8]

[Total No. of Printed Pages :2

Roll No

CM-4003-CBGS

B.E. IV Semester

Examination, June 2020

Choice Based Grading System (CBGS) Fluid Mechanics

Time: Three Hours

Maximum Marks: 70

Note:i) Attempt any five questions.

- ii) All questions carry equal marks.
- 1. In a certain application a siphon must gooner a high wall. Can water or oil which a specific gravity of 0.8 go over a higher wall? Why?
- 2. Consider the following steady, two-dimensional velocity field:

$$\overline{V} = (u, v) = \left(a^2 - \left(b - cx\right)^2\right)\overline{i} + \left(-2cby - 2c^2xy\right)\overline{j}$$

Is there a stagnation point in this flow field? If so, where is it?

- 3. Derive the Bernoulli's equation. State the assumptions made for a such derivation and write its application.
- 4. The head of water over an orifice of diameter 40mm is 10m. Find the actual discharge and actual velocity of the jet at vena-contracta.

Take
$$C_d = 0.6$$
 and $C_v = 0.98$

- 5. Define the following and give one practical example for each
 - i) Laminar flow
 - ii) Steady flow, and
 - iii) Uniform flow

CM-4003-CBGS

PTO

- 6. Given the steady two-dimensional velocity distribution u = kx, v = ky, w = 0 where k is a positive constant, compute and plot the streamline of the flow including directions and give some possible interpretations of the pattern.
- 7. Show that for laminar flow in pipes, the average velocity is precisely one-half of the maximum velocity.

OR

Explain mathematically

- i) Friction factor
- ii) Loss of head due to pipe fittings
- 8. Write short notes on: (any two)
 - i) Pitot tube and Prandtl tube
 - ii) Fluidized bed and packed bed
 - iii) Power and head requirement for pumps
 - iv) Equation of continuity

CM-4003-CBGS