Roll No

CM-605 (GS)

B.E. VI Semester Examination. June 2020

Grading System (GS)

Chemical Reaction Engineering - I

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions.

- ii) All questions carry equal marks.
- 1. Define the rate of reaction and discuss its dependence on reactant concentration.
- The decomposition of Nitrous Oxide is found to proceed as follows.

$$N_2O \to N_2 + \frac{1}{2}O_2$$

$$-rN_2O = \frac{k_1(N_2O)^2}{1 + k_2(N_2O)}$$

 $-rN_2O = \frac{k_1(N_2O)^2}{1 + k_2(N_2O)}$ What is the order of reaction with respect to N₂O and overall?

3. Find the order and rate constant for the reaction data:

$$\frac{10^{3}.rate}{mole.dm^{3}.min^{-1}} 2.0 4.2 7.8 17.5$$

$$\frac{10^{2}.conc}{mole.dm^{-3}} 1.0 1.6 2.5 4.4$$

- 4. Compare plug flow reactor and mixed flow reactor for finding the size of reactor for adiabatic operations with graphs.
- 5. Define and explain the following terms:
 - i) Order of reaction
 - ii) Elementary and non elementary reactions
 - iii) Molecularity
 - iv) Single and multiple reactions
- 6. Write short notes on the following:
 - Segregation model
 - ii) RTD dispersion model
- Fit the tank in series model to the following mixing cup output data to a pulse input.

t	0-2	2-4	4-6	6-8	8-10	10-12
C	2	10	8	4	2	0

8. Explain Arrhenius qualitative theory for molecular reactions.
