Total No. of Questions: 10 ] [ Total No. of Printed Pages: 5

CS/EC/IT-401(NGS)

Roll No. ....

# B. E. (Fourth Semester) EXAMINATION, June, 2012

(Non-Grading System)

(Common For CS, EC & IT Engg. Branch)

## COMPUTER SYSTEM ORGANIZATION

Time: Three Hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: The question paper is divided into five Units. Each Unit carries an internal choice. Attempt *one* question from each Unit. Thus attempt *five* questions in all. All questions carry equal marks. Assume suitable data whenever necessary.

#### Unit-I

(i) A two-word instruction is stored in memory at an address designated by symbol w. The address field of the instruction (stored at w + 1) is designated by symbol y. The operand used during the execution of instruction is stored at an address symbolized by z. An index register contains the value x. State how z is calculated from other address if the addressing mode of instruction is:

(a) Direct

P. T. O.

- (b) Indirect
- (c) Relative
- (d) Indexed
- (ii) Write a program to evaluate the arithmetic statement: 10

$$X = \frac{A - B + C * (D * E - F)}{G + H * K}$$

- (a) Using a general register computer with three address instructions.
- (b) Using a general register computer with two address instructions.
- (c) Using a accumulator type computer with one address instructions.
- (d) Using a stack organized computer with zero address operation instructions.

#### 0

- (i) Draw the functional and structural views of a computer system and explain in detail.
  - (ii) What are the major steps a processor has to perform to execute an instruction? Explain briefly, 4
  - (iii) Explain the internal architecture of 8085 with a neat block diagram.

## Unit-II

- (i) With the help of a neat diagram and example, explain the working of a typical microprogrammed control unit.
  - (ii) What is meant by Normalization? Explain the IEEE
    standards to represent floating point number.
  - (iii) Draw and explain the block diagram of general purpose register architecture of CPU. 5

- 4. (i) A digital computer has a common bus system for 16 registers of 32 bits each. The bus is constructed with multiplexers:
  - (a) How many selection inputs are there in each multiplexer?
  - (b) How many multiplexers are there in the bus ?
  - (ii) Explain Booth's multiplication algorithm through an example, Give an example of multiplication and multiplier for which this algorithm takes the maximum time.
  - (iii) Compare horizontal microcode with vertical microcode. State the advantage of microprogrammed control unit.

## Unit-III

- (i) Explain the interrupt process in 8085 and the difference between a non-maskable and a maskable interrupt,
  - (ii) Describe the function of DMA controller in data transfer between I/O and memory. State different modes of DMA operation.
  - (iii) State the difference between I/O mapped I/O and memory mapped I/O.

Or

6. (i) Define the following:

\_ 10

- (a) . Asynchronous Data Transfer
- (b) Asynchronous Communication Interface

P. T. O.

(ii) What is Interrupt? Describe different types of interrupts and their use. How a processor handles a vectored interrupt?

#### Unit-IV

- (i) Explain a typical associative memory organization.
   Describe the various steps involved in accessing the content of the associative memory.
   10
  - (ii) A memory system contains a cache, a main memory and a virtual memory. The access time of cache memory is 5 nsec and it has 80% hit rate. The access time of main memory is 100 nsec and it has 99.5% hit rate. The access time of virtual memory is 10 msec. What is the average access time of the hierarchy? 5
  - (iii) Give a block diagram for 512 K \* 32 memory using 64 K \* 8 memory chips and explain.

### Or

- 8. (i) Discuss the different mapping techniques used for cache memory. What is the need of mapping techniques?
  - (ii) For a set associative cache organization, the parameters are as follows: 10

T<sub>c</sub> → Cache access time

T<sub>m</sub> → Memory access time

L → Number of sets

B → Block size

K \* B → Set size

Calculate hit ratio for loop executed 100 times where the size of loop is N \* B and N = K \* M is a non-negative integer and  $1 < M \le L$ .

## Unit-V

- (i) What are Pipeline Hazards? What are the causes of pipeline hazards? Describe briefly the hazard detection and resolution of hazards in pipelines. 10
  - (ii) A program repeatedly executes a loop that has 120 iterations. Each iteration takes 10000 cycles. On multiprocessor systems, 50000 cycles are required to synchronize the processor once all iteration of loop have completed:
    - (a) What is the execution time of each loop on a uniprocessor system?
    - (b) What is the execution time of each loop on a 2-processor system, and what is the speedup over the uniprocessor system?
    - (c) What is the execution time of each loop on a 4-processor system and what is the speedup over the uniprocessor system?

Or

10. Write short notes on the following:

20

- (i) Multiprocessor systems
- (ii) Message passing system
- (iii) Shared memory system
- (iv) Interprocess communication