Roll No			
---------	--	--	--

CS/IT-302 (GS)

B.E. III Semester Examination, June 2020

Grading System (GS) Discrete Structure

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions.

- ii) All questions carry equal marks.
- 1. Let $A = \{2, 3, 4\}$ and $B = \{3, 4, 5, 6, 7\}$. Assume a relation R from A to B such that $(x, y) \in R$ when a divides 6. Determine R, its domain and range.
- 2. If A be the set of all triangles in a plane and $R = \{(a, b) : \Delta a = \Delta b\}$, i.e. $aRb \leftrightarrow area$ of the triangle a = Area of the triangle, then prove that R is an equivalence relation.
- 3. Let A = B = C = R, and Let $f: A \rightarrow B$, $g: B \rightarrow C$ be defined by f(a) = a + 1 and $g(b) = b^2 + 2$, find
 - i) (gof) (-2)
 - ii) (fog)(x)
 - iii) (gog) (y)
 - iv) (gof)(x)
- 4. If A, B and C are any three sets, prove that:
 - i) $A-(B\cap C)=(A-B)\cup (A-C)$
 - ii) $A-(B \cup C) = (A-B) \cap (A-C)$
- 5. Among integers 1 to 300, how many of them are divisible neither by 3, nor by 5, nor by 7? How many of them are divisible by 3 but not by 5, nor by 7?
- 6. State Euler's formula for a planar graph. Give an example of a planar graph with 5 vertices and 5 regions and venty Euler's formula for your example.

OR

Show that the maximum number of edges in simple graph with *n* vertices is $\frac{n(n-1)}{2}$

- 7. Which of the following formulas are tautologies? Explain what is meant by "tautology" and write down truth tables to justify your answers.
 - i) $p \Rightarrow q$
 - ii) $(p \Rightarrow q) \Rightarrow p$
 - iii) $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$

CS/IT-302 (GS)

[2]

OR

Solve the recurrence relation:

$$a_r - 7a_{r-1} + 10a_{r-2} = 0$$
 given $a_0 = 0$ and $a_1 = 6$

- 8. Write the short notes. (any two)
 - a) Graph Coloring
 - b) Types of functions
 - c) Recurrence relation
 - d) Conjunctive and Disjunctive Normal Form
 - e) Lattice
