Total N	No. of Questions: 5] [Total No. of Printed Pages: 4
	Roll No
	EC-604
B. E.	(Sixth Semester) EXAMINATION, June, 2012
	(Electronics & Communication Engg. Branch)
	MICROWAVE ENGINEERING
	(EC-604)
	Time: Three Hours
	Maximum Marks: 100
	Minimum Pass Marks: 35
Note:	Answer all the questions. Assume suitable data if any missing. Answer must be to the point.
1. (a)	The locations of two minimums on a slotted line section are found at 4.45 cm and 7.36 cm. What is the incident frequency for a TE_{10} wave if the cutoff wavelength of the wave guide is 7.0 cm?
(b)	The cutoff wavelength of a waveguide is 1.70 cm and group velocity is 1.78×10^{10} cm/s. What is the incident frequency to the wave guide?
(c)	
• • •	wave guide to operate in the TE_{11} mode at a frequency
	of 12 GHz.
(d)	How do TEM and TE wave differ ?

Or

frequency?

(a) How do the dimensions of wave guide affect the cutoff

rgpvonline.com

	•
(b)	Find the velocity of a wave travelling down a rectangular wave guide whose outer dimensions are $2 \cdot 0 \times 1 \cdot 0$ inch with a wall thickness of $0 \cdot 064$ inch and a frequency of operation $4 \cdot 4$ GHz.
(c)	Discuss how wave equations are useful in understanding the propagation of EM waves in wave guides.
(d)	Explain why both incident and reflected waves are required to propagate an electromagnetic wave through a rectangular wave guide.
(a)	A three-way power divider has an insertion loss of 0.5 dB. If the input power is 0 dBm, what is the output power in dBm and milliwatts at any <i>one</i> of the output ports?
(b)	•
(c)	How does a flan attenuator differ from a vane type ? 5

(a) What is the significance of using isolator in microwave circuits?

(b) Explain the characteristics of a 3 port circulator, listing S-matrix. How can this be used as an isolator?

(c) A 20 mW signal is fed into the series arm of a lossless Magic tee junction. Calculate the power delivered through each port when other ports are terminated in matched load.
8

3. (a) Why are transferred electron devices able to operate at higher frequencies than bipolar transistor?

4

2.

P. T. O.

(b)	How does a semiconductor laser differ from a
	helium-neon gas laser?
(c)	What are the advantages of tunnel diode? 6
(d)	How does a tunnel diode operate? 5
	Or
(a)	Explain negative resistance. 5
(b)	Explain the operation of Gunn diode. 7
(c)	Explain the working of Tunnel diode as an oscillator and as an amplifier.
(a)	By means of an Applegate diagram, explain the operation of a reflex klystron. Show that the theoretical efficiency of reflex klystron is 27.78%. 11
(b)	Describe the phenomenon of velocity modulation in a two cavity klystron and explain how microwave power; amplified by the interaction of velocity modulated beam with electromagnetic field in the two cavity klystron.
	Or
An open	X-band cylindrical magnetron has the following rating parameters: 20
Ano	ode voltage = 26 Kv
Bea	m current $= 27 \text{ A}$
	gnetic flux density = 0.336 WB/m^2
	lius of cathode cylinder = 5 cm
	lius of can edge to centre= 10 cm npute:
(i)	•
	the cutoff voltage for a fixed magnetic flux density.
	ive all the relations used to calculate the above
quai	ntities.

5	(0)	Explain the method to measure VSWR and reflecti	on.
J.	(a)	coefficient.	9
	(b)	Explain the operation of calorimetric method	of
	` '	microwave power measurement.	11
		O	

Or

- (a) Explain a method for the measurement of attenuation at microwave frequencies.
- (b) Draw the block diagram of network analyser and explain the function of every block.