Roll No ..

EE - 504

B.E. V Semester

Examination, December 2015

Digital Electronics and Logic Design

Time: Three Hours

Maximum Marks: 70

Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.

- ii) All parts of each questions are to be attempted at one place.
- iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
- iv) Except numericals, Derivation, Design and Drawing etc.

Unit-I

- a) Convert (11010111.110)₂ to decimal and hexadecimal numbers.
 - b) Subtract (3250–72532)₁₀ using 10's complement.
 - c) Express the number (8620)₁₀ in BCD and excess 3-code.
 - d) Explain error detecting and correcting codes with examples.

OR

Explain weighted and non-weighted codes with example.

Unit-II

- 2. a) Implement EX-OR using NAND gates only.
 - b) Implement the given function using NAND gates $F(A, B, C) = \Sigma m(0, 6)$.
 - c) Implement the function using universal gates only $f = xy + x\overline{y}$.
 - d) Draw a TTL circuit with totem pole output and explain its working. Why should it not be used for wired AND connection?

OR

Write short notes on: ECL Logic Family.

Unit-III

- 3. a) Explain encoders with diagram.
 - b) Explain multiplexers with diagram.
 - c) Express the Boolean function $F = \overline{AC + BC}$ in a sum of minterms.
 - Minimize the following Boolean expression using K-map and realize it using the basic gates.

$$f = \Sigma m(1, 3, 5, 9, 11, 13)$$

OR

A combinational circuit is defined by the functions:

$$F_1(A, B, C) = \Sigma(3, 5, 6, 7)$$

$$F_2(A, B, C) = \Sigma(0, 2, 47)$$

Implement the circuit with a PLA having 3-inputs, 4-product terms and two-outputs.

Unit-IV

- 4. a) Obtain excitation table of JK-Flip-Flop.
 - b) Convert T-Flip-Flop to D-Flip-Flop.
 - For a toggle flip-flop, write the state table, draw the state diagram and write the state equations.
 - d) Explain the designing features and working of a 3-bit bidirectional shift-register with parallel load.

OR

By using suitable ffs, design a counter to go through the states 0-1-3-4-6-0. Draw the logic diagram. Examine the active of counter for the unused states.

Unit-V

- 5. a) Calculate the number of address and data lines of 256K × 4 IC.
 - b) Compare RAM and ROM.
 - c) Explain the concept of memory decoding.
 - d) Explain ROM and its working. How is it different from PLA.

OR

Explain the dual-slope converter.
