http://www.rgpvonline.com

EE-6004 (CBGS)

B.E. VI Semester

Examination, May 2019

Choice Based Grading System (CBGS)

Power System - II

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions.

ii) All questions carry equal marks.

- What are the problems associated with modern inter connected power system?
 - b) Explain pricing of energy and transmission services. 7
- Form Y_{bus} for the 4 bus system if the line series impedance are as follows:

Line (bus to bus)	Impedance
1-2	0.12 + j0.3 p.u
1-3	0.1 + j0.4 p.u
2-3	0.18 + j0.6 p.u
2-4	0.05 + j0.2 p.u
3-4	0.05 + j0.2 p.u

Neglect the shunt capacitance of line.

EE-6004 (CBGS)

http://www.rgpvonline.com

PTO

http://www.rgpvonline.com

http://www.rgpvonline.com

- Derive the expression for steady state frequency change for single area system with following cases:
 - Changes in load with fixed speed
 - ii) Changes in speed with fixed demand
 - b) For a two identical area system the following data is given. Determine the frequency of oscillations when a step load disturbance occurs

Speed regulation coefficient = 4 Hz/pu mw

Damping coefficient = 0.03pu mw/Hz

System frequency = 50Hz

The tie line has capacity of 0.1 per.

The power angle is 30° just before the occurrence of the load disturbance. http://www.rgpvonline.com

- Explain the different methods of voltage control in Transmission line.
 - Discuss in detail about generation and absorption of reactive power in power system components.
- Distinguish between rotor angle stability and voltage stability.
 - b) Derive swing equation. Discuss its applications.
 - a) Draw a general block diagram of voltage regulator and explain the function of each block.

[3]

- b) Draw the circuit for a typical excitation system and derive the transfer function model.
- a) Explain why it is necessary for keeping strict limits on the system frequency variations.
 - b) Determine the K.E stored by 50 MVA, 50Hz 2 pole alternator with an inertia constant 5kW-sec/kVA. If the machine is running steady at synchronous speed with a shaft input of 65000 H.P When electrical power developed suddenly changes from its normal value to a value of 40MW. Determine the acceleration or de acceleration of the rotor.
- 8. Short notes (any two)

 $2 \times 7 = 14$

- i) Economic dispatch
- ii) Power system restructuring
- iii) Compare load flow methods
- iv) Use of Y_{bus} and Z_{bus}

http://www.rgpvonline.com