Roll No

EE/EX-5002-CBGS

B.E. V Semester

Examination, December 2020

Choice Based Grading System (CBGS) Electrical Machine - II

Time: Three Hours

Maximum Marks: 70

- *Note:* i) Attempt any five questions.
 - ii) All questions carry equal marks.
- 1. a) Explain the construction operating principle and hence working of brushless dc motor. Also explain torque angle characteristics and write its applications.
 - b) Discuss briefly the concept of metadyne and amplidyne.
- 2. a) Why is the starting current very high in a DC motor? How does the starter reduce the starting current to a safe value?
 - b) What are the drawbacks of three-point starter? Describe a four-point starter with a neat sketch.
- 3. a) What are the losses that occures in D.C. machines? Derive the condition for maximum efficiency of a D.C. generator.
 - b) Name the various method of speed control of D.C. motors and describe any one of them.
- 4. a) Derive emf equation for an alternator. Explain clearly the meaning of distribution factor.
 - b) What is armature reaction? Discuss the armature reaction in alternator or synchronous motor.

EE/EX-5002-CBGS

PTO

- 5. a) Explain the lab circuit diagram to determine the Xd and Xq by slip test.
 - b) Describe the bright lamp method with circuit diagram to perform parallel operation of two alternators.
- 6. A 6-pole, 3-phase, 50Hz alternator has 12-slots and 4-conductor per slot. The winding five-sixth pitch and the flux per pole is 1.5 Wb. The armature coil are all connected in series with connection. Calculate induced emf.
- 7. Describe two reaction theory of salient pole synchronous machine, draw its equivalent circuit model and phasor diagram for lagging power factor load.
- 8. Write short notes on any two of the following:
 - a) Stepper motor
 - b) Switched Reluctance motor
 - c) Hysteresis motor
 - d) Repulsion motor
