Roll No

EE/EX-7005(4)-CBGS

B.E. VII Semester

Examination, December 2020

Choice Based Grading System (CBGS) Advanced Control System

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions.

- ii) All questions carry equal marks.
- 1. a) Obtain the transfer function for the system described by the state model

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 2 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- b) Solve the difference equation by means of Z-transform x(n+2) x(n)=0; x(0)=1, x(1)=0
- 2. Determine the state space technique and what is the development of feedback control laws through state space technique?
- 3. Describe variable structure control and its applications in detail.

EE/EX-7005(4)-CBGS

PTO

4. a) Determine whether the following system is controllable and observable or not?

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- b) Explain the effect of adding a pole to a second-order system. When is it useful to add a zero to the system?
- 5. The dynamics of control system is represented by

$$\dot{x}_1 = x_2 - x_1 \left(x_1^2 + x_2^2 \right); \ \dot{x}_2 = -x_1 - x_2 \left(x_1^2 + x_2^2 \right)$$

Determine the system stability using Lyapunov method.

6. Obtain the time-response of the following system:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ -2 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u(t)$$

- 7. Explain the following:
 - a) Pontryagin's maximum principle
 - b) Transversality condition
- 8. Write a short notes on
 - a) Euler-Lagrange equations.
 - b) Phase plane technique.
 - c) Effect of load disturbance upon control action.
