Total No. of Questions: 10] [Total No. of Printed Pages: 3

Roll No. Rgpvonline.com

EX-402

B. E. (Fourth Semester) EXAMINATION, Dec., 2011

(Electrical & Electronics Engg. Branch)

ELECTRICAL AND ELECTRONIC MATERIALS

(EX - 402)

. Time: Three Hours

Maximum Marks: 100

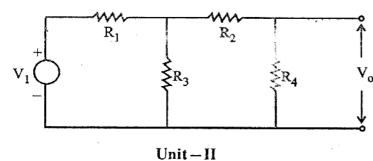
Minimum Pass Marks: 35

Note: Attempt any *two* parts from each Unit. All questions carry equal marks.

Unit-I

- 1. (a) Discuss the relative merits and demerits of aluminium used as electric conductor instead of copper. 10
 - (b) What are the important characteristics and requirements of the various groups of resistor materials based on their practical application? 10

Or


- 2. (a) What material is used for the element of electrical heaters? What are the properties the material must possess for this use?
 - (b) Discuss MHD generator giving greater emphasis on the material used in it.

Rapvonline.com

[3]

Or

Draw the signal flow graph for the following network and then determine the transfer function.

2. The following expression denotes the time response of a servomechanism:

$$c(t) = 1 + 0.2e^{-60t} - 1.2e^{-10t}$$

- (i) Obtain the expression for the closed loop transfer function of the system.
- (ii) Determine the undamped frequency and damping ratio. Assume unit step input.

Or

For unity feedback system having:

G (s) =
$$\frac{s(s+1)}{s^2(s+3)(s+10)}$$

determine type of system, error coefficients and the steady state error for input:

$$r(t) = 1 + 3t + \frac{t^2}{2}$$

Unit-III

3. Consider the following characteristics equation:

$$s^4 + K s^3 + s^2 + s + 1 = 0$$

Determine the range of 'K' for stability.

Draw the root locus of the unity feedback system whose open loop transfer function is:

G(s) =
$$\frac{K(s+4)}{s(s+5)(s^2+5s+25)}$$

Find the value of 'K' for stability.

4. Consider a unity feedback system having transfer function:

$$G(s) = \frac{K}{s(s+2)}$$

whose velocity constant has to be $10 \sec^{-1}$ and the phase margin should be 40° . Design a compensating circuit to meet these requirements.

0r

Design a PID controller for a unity feedback system whose open loop transfer function is:

$$G_{\varsigma}(s) H(s) = \frac{100}{(s+2)(s+3)(s+5)}$$

so that the phase margin of the system will be 45° at 4 rad/sec. and steady state error will be 10% for unit ramp input.

5. Obtain the time response y(t) of the following system:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & -0.5 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0.5 \\ 0 \end{bmatrix} u, \begin{bmatrix} x_1(0) \\ (x_2(0)) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
and $y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Or

Explain in detail the concept of observability and controllability.