Total No. of Questions: 10] [Total No. of Printed Pages: 4

Roll No.

EX-602

B. E. (Sixth Semester) EXAMINATION, June, 2012

(Electrical & Electronics Engg. Branch)

CONTROL SYSTEMS

(EX - 602)

Time: Three Hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Attempt *one* question from each Unit. Provide graph and log papers. Assume suitable data if any missing.

Unit-I

1. (a) Determine the transfer function C(s)/R(s) for the block diagram shown in Fig. 1.

Fig. 1

P. T. O.

(b) Obtain the transfer function $X_1(s)/F(s)$ of the mechanical system shown in Fig. 2.

Fig. 2
Or

2. (a) Using Mason's rule, find the transfer function, T(s) = C(s)/R(s), for the system represented by Fig. 3.

Fig. 3

(b) Describe the construction and functioning of a. c. servomotor with diagrams.

Unit-II

- 3. (a) For a second order system, derive the expression for peak overshoot for a unit step input and the peak time.

 10
 - (b) Determine the stability of a closed loop control system whose characteristic equation is:

$$s^5 + s^4 + 2s^3 + 2s^2 + 11s + 10 = 0$$

Or

4. (a) Find the error coefficients $(k_p, k_v \text{ and } k_a)$ of the system whose transfer function is given in Fig. 4. 10

Fig. 4

(b) Sketch the transient response of second order system with unit step input. Define and explain various specifications.

Unit-III

5. (a)
$$G(s) H(s) = \frac{K}{s(s+3)(s+5)}$$

Draw root locus. Determine for damping ratio = 0.6:

- (i) Closed loop dominant poles
- (ii) Damped natural frequency
- (iii) Gain K

(b) Describe the concept of angle of arrival and angle of departure in root locus.

0r

6. Draw the root locus of the system whose open loop transfer function:

G (s) H (s) =
$$\frac{K}{s(s+3)(s^2+3s+11\cdot25)}$$

P. T. O.

10

Unit-IV

7. (a) Sketch the Bode plot of the transfer function: 10

G (s) =
$$\frac{4}{s(1+s)(2+s)}$$

Determine G. M. and P. M.

(b) Draw the complete Nyquist plot for the system: 10

G (s) H (s) =
$$\frac{60}{(s+1)(s+2)(s+5)}$$
Or

8. (a) Draw the polar plot for:

10 G (s) H (s) = $\frac{1}{s(1+T_1 s)(1+T_2 s)}$

Describe the various frequency domain specifications and how are they used to design the system. 10

Unit-V

- Explain the lag-lead compensator. Discuss its pole 9. (a) 10 zero plot and Bode plot.
 - Design a lag compensator for a system with open loop (b) 10 transfer function as:

$$G(s) = \frac{K}{s(s+1)(s+4)}$$

to meet the following specifications:

- Damping ratio = 0.5(i)
- Velocity error constant $\geq 5 \sec^{-1}$ (ii)
- Settling time = 10 sec. (iii)

Or

10. (a) Describe the types of compensation.

Draw the block diagram and characteristic curve for (b) the PI, PD and PID control action. Also find out the 15 transfer functions.

5

6630 EX - 602