Total No. of Questions:10]

[Total No. of Printed Pages :3

RGPVONLINE.COM

Roll No	
---------	--

EX - 703

B.E. VII Semester

Examination, December 2012

Digital Signal Processing

Time: Three Hours

Maximum Marks: 100

Minimum Pass Marks:35

Note: Attempt *One* question from each unit All questions carry equal marks.

UNITI

- I (a) Examine the following systems with respect to the properties linearity, Time variance, causality and stability.
 - (i) y(n) = x(-n+2)
 - (ii) y(n) = x(2n)

(iii) y (n) =
$$\sum_{k=-\infty}^{n} x(k)$$

(b) Determine the Fourier transform of the signal

$$x(n) = a^{|n|}, -1 < a < 1$$

OR

- 2. (a) State and prove the following properties of DTFT
 - (i) Multiplication of two sequence
 - (ii) Differentiation in the frequency domain
 - (b) Discuss discrete time processing of continuous time

UNITII

3. (a) Determine the step response of the system

$$y(n) = \alpha y(n-1) + x(n) - 1 < \alpha < 1$$

when the initial condition is y(-1) = 1

(b) Determine the transient and steady state responses of the system characterized by the difference equation.

$$y(n) = 0.5 y(n-1) + x(n)$$

when the input signal is $x(n)=10\cos(xn/4)u(n)$. The system is initially at rest

OR

4. A LTI system is characterised by the system function

$$H(z) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}}$$

Specify the ROC of H(z) and determine h(n) for the following condition

- (i) The system is stable
- (ii) The system is causal
- (iii) The system si anti causal

UNIT III

5. (a) Perform the circular convolution of the following sequences.

$$x_1(n) = \{2,1,2,1\}$$

$$\uparrow$$

$$x_2(n) = \{1,2,3,4\}$$

(b) Derive the signal flow graph for the N=16 point, radix - 4, decimation in time FFT algorithm

OR

6. Compute the eight point DFT of the sequence

$$x(n) = \begin{cases} 1, 0 \le n \le 7 \\ 0, otherwise \end{cases}$$

by using the decimation in frequency FFT algorithm

UNIT IV

- 7. (a) Explain the bilinear transformation method for designing IIR filter.
 - (b) Convert the analog filter with system function

into a digital IIR filter by means of the impulse invariance method.

OR

- 8. (a) Discuss Butterworth analog filter approximation for IIR digital filter.
 - (b) Explain canonic realization of IIR digital filter

UNIT V

9. Discuss the designing of FIR filter using Kieser window.

OR

10 Discuss the designing of FIR filter using rectangular window.

RGPVONLINE.COM
