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UNIT – III 

Unit-III/Lecture-01 

Concept of Dynamic Programming 

Concept of dynamic programming: 
 

Dynamic Programming(usually referred to as DP ) is a powerful technique that allows to solve 

many different types of problems in time O(n2) or O(n3) for which a naive approach would take 

exponential time. In the word dynamic programming the word programming stands for 

planning  and it does not mean by computer programming. Dynamic programming is typically 

applied to optimization problem. 

Dynamic Programming is an algorithmic paradigm that solves a given complex problem by 

breaking it into subproblems and stores the results of subproblems to avoid computing the same 

results again. Following are the two main properties of a problem that suggest that the given 

problem can be solved using Dynamic programming. 

1) Overlapping Subproblems 

2) Optimal Substructure 

1) Overlapping Subproblems: 

Like Divide and Conquer, Dynamic Programming combines solutions to sub-problems. Dynamic 

Programming is mainly used when solutions of same subproblems are needed again and again. In 

dynamic programming, computed solutions to subproblems are stored in a table so that these 

don’t have to recomputed. So Dynamic Programming is not useful when there are no common 

(overlapping) subproblems because there is no point storing the solutions if they are not needed 

again. For example, Binary Search doesn’t have common subproblems. If we take example of 

following recursive program for Fibonacci Numbers, there are many subproblems which are solved 

again and again. 

 

int fib(int n) 

{ 

   if ( n <= 1 ) 

      return n; 

   return fib(n-1) + fib(n-2); 

} 

 

2) Optimal Substructure 

A problem is said to have optimal substructure if an optimal solution can be constructed 

efficiently from optimal solutions of its subproblems. This property is used to determine the 

usefulness of dynamic programming and greedy algorithms for a problem. 

 

There are two ways of doing this. 

1) Top-Down : Start solving the given problem by breaking it down. If you see that the problem 

has been solved already, then just return the saved answer. If it has not been solved, solve it and 

save the answer. This is usually easy to think of and very intuitive. This is referred to as 

Memoization. 

 

2) Bottom-Up : Analyze the problem and see the order in which the sub-problems are solved and 

start solving from the trivial subproblem , up towards the given problem. In this process, it is 

guaranteed that the subproblems are solved before solving the problem. This is referred to as  
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Dynamic Programming: 

Note that divide and conquer is slightly a different technique. In that, we divide the problem in to 

non-overlapping subproblems and solve them independently, like in mergesort and quick sort. 

 

Principal of optimality: [RGPV June-2014(2)] 

 The principle of optimality states that no matter what the first decision, the remaining 

decisions must be optimal with respect to the state that results from this first decision. 

This principle implies that an optimal decision sequence is comprised for some formulations of 

some problem. 

Since the principle of optimality may not hold for some formulations of some problems, it is 

necessary to verify that it does not hold for the problem being solved. 

Dynamic programming cannot be applied when this principle does not hold. 

 

S.NO RGPV QUESTIONS Year Marks 
Q.1    
Q.2    
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Unit-III/Lecture-02 

0/1 knapsack Problem 

0/1 knapsack: [RGPV June-2014(3)] 
 
Given weights and values of n items, put these items in a knapsack of capacity W to get the 

maximum total value in the knapsack. In other words, given two integer arrays val[0..n-1] and 

wt[0..n-1] which represent values and weights associated with n items respectively. Also given an 

integer W which represents knapsack capacity, find out the maximum value subset of val[] such that 

sum of the weights of this subset is smaller than or equal to W. You cannot break an item, either 

pick the complete item, or don’t pick it (0-1 property). 

 

Problem Description 
If we are given n objects and a knapsack or a bag in which the object i that has weight wi is to be 
placed. The knapsack has a capacity W. Then the profit that can be earned is pixi. The objective is to 

obtain filling of knapsack with maximum profit earned.Maximized pixi.  subject to constraint 
wixi<=W Where 1<=i<=n and n is total no. of objects and  xi =0 or 1. 
 
Steps and Notations 
 
Step-1: 
Let fi(yi) be the value of optimal solution. Then si is pair (p,w) where p=f( yj) and w=yj  Initially  
s0 = {(0,0)}  
We can compute si+1 from si 

. These computations of si are basically the sequence of decisions made 
for obtaining the optimal solutions. 
 
Step-2: 
We can generate the sequence of decisions in order to obtain the optimum selection for solving the 
knapsack problem.   

 
Let xn be the optimum sequence. Then there are two instances {xn} and {xn-1,xn-2….x1}. 
So from {xn-1,xn-2….x1} we will choose the optimum sequence with respect to xn. 
The selection of sequence from remaining set should be such that we should be able to fulfill the 
condition of filling knapsack capacity W with maximum profit. 
Otherwise {xn-1,xn-2….x1} is not optimum. 
This proves that 0/1 knapsack problem is solved using principle of optimality. 
 
Step-3: 
Let fi(yj) be the value of optimal solution. Then fi(y) = max{fi-1(y), fi-1(y-wi)+pi} 
Initially compute 
    s0={(0,0)} 
si

1 = {(P,W)|(P-pi, W-wi) belongs to si} 
 
Si+1

 can be computed by merging si and si
1 

 
Purging rule 
If si+1 contains (Pj, Wj) and (Pk, Wk) these two pairs such that Pj<=Pk and Wj>=Wk, then (Pj,Wj) can 
be eliminated . This purging rule is also called as dominance rule. In purging rule basically the 
dominated tuples gets purged. In short remove the pair with less profit and more weight. 
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Problem-1  
Solve knapsack instance M=8, and n=4. let pi and wi are as shown below. 
 

i pi wi 

1 1 2 

2 2 3 

3 5 4 

4 6 5 

 
Solution- 

 

s
0
={(0,0)} initially 

 
s

0
1={(1,2)} 

That means while building s
0

1 we select the next i
th

 pair.  

For s
0

1 we have selected first (P,W) pair which (1,2). 

 

S
1
 ={merge s

0
 and s

0
1} 

   ={(0,0),(1,2)} 

s
1

1={select next (P,W) pair and add it with s
1
} 

    ={(2,3),(2+0,3+0), (2+1,3+2)} 

s
1

1 ={(2,3),(3,5)} // repetition of (2,3) avoided. 

 

S
2
 ={merge candidates from s

1
 and s

1
1} 

   ={ (0,0), (1,2), (2,3), (3,5)} 

S
2

1 ={select next (P,W) pair and add it with s
2
} 

 ={(5,4),(6,6),(7,7),(8,9)} 

S
3
 ={merge candidates from s

2
 and s

2
1} 

   ={ (0,0), (1,2), (2,3),(5,4),(6,6),(7,7),(8,9)} 

 

Note that the pair (3, 5) is purged form s
3
. 

Because let us assume (Pj, Wj) = (3, 5) and (Pk, Wk) = (5, 4). 

Here Pj<=Pk and Wj>Wk is true hence we will eliminate pair (Pj, Wj) = (3, 5) from s
3
. 

 

S
3

1 ={select next (P,W) pair and add it with s
3
} 

S
3

1  ={(6,5),(7,7),(8,8),(11,9),(12,11) ,(13,12) ,(14,14)} 

 

S
4
={(0,0),(1,2),(2,3) ,(5,4) ,(6,6) ,(7,7),(8,9) ,(6,5) ,(8,8),(11,9),(12,11) ,(13,12) ,(14,14)} 

Now we are interested in M=8. We get pair (8, 8) in s
4
.  

Hence we will set x4=1. 

 

Now we select next object (P-p4) and (W-w4). 

i.e (8-6) and (8-5). 

i.e (2,3) 

Pair (2,3) belongs to s
2
.hence set x2=1. 

So we get the final solution as (0, 1, 0, 1).
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S.NO RGPV QUESTIONS Year Marks 

Q.1    

Q.2    
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Multistage graph 

Multistage graph:[RGPV June-2014(2)] 
 
A multistage graph G=(V,E) is a directed graph in which the vertices are partitioned into k ≥ 2 
disjoint sets Vi, 1 ≤ i ≤ k . In addition if (u, v) is an edge in E, then u ε Vi and v ε Vi+1, for some i, 1 ≤ 
i ≤ k. The sets V1 and Vk are such that |V1|=|Vk|=1.  
Let s and t, respectively be the vertex in V1 and Vk. The vertex s is the source, and t the sink. 
 
The above definition says that the vertices are divided into several disjoint partitions in a multistage 
graph. Each partition is called as a stage which contains several vertices. The first and last  
partition /stage of the graph contains one vertex each, namely, the source (s) and the sink (t). 
 
Let c(i, j) be the cost of edge (i, j). The cost of a path from s to t is the sum of the costs of the edges 
on the path. The multistage graph problem is to find a minimum cost path from s to t. It should be 
noted that each set Vi defines a stage in the graph. Because of the constraints on E (the set of edges), 
every path from s to t starts from the source vertex in stage 1, goes to stage 2, then to stage 3 and so 
on, and eventually terminates at the sink vertex in stage K, i.e. the last stage. Consider the directed 
graph given below. 

                                           
                                            Fig-3.1 Multistage Graph with Five Stages 
 
 
There are five stages in the graph i.e. k = 5 in this graph. The five stages are listed below: 
Stage 1: V1 = {1}, the source vertex s. 

Stage 2: V2 = {2, 3, 4, 5} 

Stage 3: V3 = {6,7,8} 

Stage 4: V4 = {9,10, 11} 

Stage 5: V5 = {12}, the sink vertex t. 
 
 
From the graph given in Fig-3.1, it can be noticed that the shortest path from the source vertex to 
sink vertex is "1 - 2 -7 - 10 -12". Tthe path from s to t starts from the source vertex in stage 1, goes to 
stage 2, then to stage 3 and so on, and terminates at the sink vertex in stage 5. i.e. the shortest path 
from s to t starts from the source vertex, 1, which is in stage1, travels through vertex 2 which is in 
stage 2, vertex 7 which is in stage 3, vertex 10 which is in stage 4 and terminates at the sink vertex, 
12, which is in stage 5.  There are many real-life problems that can be formulated as multistage 
graph problem. Few examples include resource allocation for a project in a software company or 
manufacturing company, project management, job scheduling in operating system etc. 
 
Finding the Shortest Path from Source to Sink  
                                               A dynamic programming formulation for k-stage graph problem is 
obtained by first noticing that every s to t path is the result of a sequence of (k-2) decisions. The ith 
decision involves determining which vertex in Vi+1, 1< i < k-2, is to be on the path. It is easy to see 
that the principle of optimality holds. 
 
 
From the weights assigned in the graph, it is easy to observe the following values: 
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cost (1, 2) = 9, cost (1, 3) =7, cost (1, 4)= 3 and cost (1,5) = 2.  
cost (2, 6) = 4, cost (2, 7) = 2 and cost (2, 8) = 1. 
cost (3,6) = 2 and cost (3,7) = 7. 
cost (4,8)=11. 
cost (5,7)=11 and cost (5,8)=8. 
cost (6,9) = 6 and cost (6,9)=5. 
cost (7,9) = 4 and cost (7,10) = 3. 
cost (8,10) = 5 and cost (8,11)=6. 
cost (9,12) = 4. 
cost (10,12) = 2. 
cost (11,12) = 5. 
 
There are two approaches, namely, forward approach and backward approach, to find the shortest 
path from the source node to the sink node in a multistage graph.  
 
Forward approach:  
Assume at stage k that we know the min cost path from each node in stage k+1 to the goal state. 
 

                                          
 
MinCost(Q,Goal)=Min(Cost(Q,R1)+MinCost(R1,Goal), Cost(Q,R2)+MinCost(R2,Goal), …,   
              Cost(Q,Rn)+MinCost(Rn,Goal)) 
 
The cost is computed as follows using the forward approach.  
         cost( i , j ) = min { c( j , l) + cost( i+1, l ) }……………… (1) 
                            l ε Vi+1  
                          < j, l> ε E, more than one vertex is considered for l 
 
Since, cost(k-1, j ) = c( j ,t ) if  <j, t>  ε E and cost ( k-1, j) = ∞   if  <j, t>   does not belong to E.  
 
 
    We need to solve for cost (1, s) by first computing cost (k-2, j) for all j ε Vk-2, then computing cost 
(k-3, j) for all j ε Vk-3 etc. and finally cost (1, s). The computations using the forward approach based 
on formula (1) for the graph shown in Fig-3.1 . 
 
 

 
 It should be noted that in the calculation of cost (2,2), we have reused the values of cost (3, 6) and 
cost (3, 7) and cost (3, 8), and thereby avoiding the recomputation. A minimum cost path from s to t 
has the cost of 16. This path can be determined easily if we record the decision made at each state 
(vertex).  
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 Let the minimum-cost path be s = 1, v2, v3, ….vk-1, t. It is easy to see that v2=D(1,1) = 2, v3 = D(2, 
D(1,1)) = 7 and v4 = D (3, D(2, D(1,1))) = D(3,7) = 10. The minimum-cost path from the source 
node, s, to the sink node, t, for the graph shown in Figure 1 using the forward approach is “1-2-7-10-
12”. The minimum cost is 16. 
 

 
 
 
 
Backward approach:  
Assume at stage k that we know the min cost path from start state to each node in stage k - 1. 

 
MinCost(Q,Goal)=Min(Cost(P1, Q)+MinCost(Start, P1), Cost(P2, Q)+MinCost(Start,  
                                  P2), …, Cost(Pn)+MinCost(Start, Pn)) 
 
 
The backward approach  is similar to forward approach.  The computation in forward approach 
start from V(k-2), whereas, in backward approach it starts  from V3.   Backward approach  employs 
the following computation. Let bp(i ,j ) be a minimum cost path from vertex s to a vertex j in Vi. 
Let bcost (i,j) be the cost of bp( i , j ). 
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                               Fig-3.2 Multistage Graph with Five Stages 
 
The computations by employing backward approach using formula (2) are given below: 
bcost(i,j) = min{bcost(i-1,l)+c(l,j)} 
bcost(3,4) = min{bcost(2,2)+c(2,4),bcost(2,3)+c(3,4)} = min{8,8} = 8 
bcost(3,5) = min{bcost(2,3)+c(3,5)} = min{7} = 7 
bcost(3,6) = min{bcost(2,2)+c(2,6),bcost(2,3)+c(3,6)} = min{8,10} = 8 
bcost(4,7) = min{bcost(3,4)+c(4,7),bcost(3,5)+c(5,7)} = min{9,13} = 9 
bcost(4,8) = min{bcost(3,4)+c(4,8),bcost(3,5)+c(5,8),bcost(3,6)+c(6,8)} = min{12,9,10} = 9 
bcost(5,9) = min{bcost(4,7)+c(7,9),bcost(4,8)+c(8,9)} = min{16,12} = 12 
 
Computations to find the minimum path are given below: 
     p[j]=d[p[j+1]], where p[1]=1, p[k]=n, for(j=k-1;j>=2;j--) 
 

 
 
Therefore , the minimum path using the backward approach for the graph given in Figure 3.2 is  
“1-3-5-8-9” and the minimum cost is 12. If the graph G is represented by adjacency lists, if G has 
|E| edges, then the time complexity of multistage graph problem is O (|V| + |E|).  
 
 
 

S.NO RGPV QUESTIONS Year Marks 
Q.1    
Q.2    

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unit-III/Lecture-04 

Problems based on Multistage graph 
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:[RGPV/June-2014(7)] 
 
Q.1 Find a minimum cost path from ‘S’ to ‘t’ in multistage graph using dynamic 
programming? 
 
 
 
 
 
 
 
 
 
 
 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
d(S, T) = min{1+d(A, T), 2+d(B, T), 5+d(C, T)}  

 
d(A,T) = min{4+d(D,T), 11+d(E,T)} 

             = min{4+18, 11+13} = 22.  
 
 
 
 
 
 
d(B, T) = min{9+d(D, T), 5+d(E, T), 16+d(F, T)} 

              = min{9+18, 5+13, 16+2} = 18. 
d(C, T) = min{ 2+d(F, T) } = 2+2 = 4 
d(S, T) = min{1+d(A, T), 2+d(B, T), 5+d(C, T)} 

              = min{1+22, 2+18, 5+4} = 9.   
 
 
 
 
 
 
 
 
 
 
 
 

Q.2 Find a minimum cost path from ‘S’ to ‘t’ in multistage graph using dynamic 
programming? [RGPV JUNE-2014] 
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S.NO RGPV QUESTIONS Year Marks 
Q.1    
Q.2    

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Unit-III/Lecture-05 

Reliability Design 
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Reliability Design:  
 
Reliability means the ability of an apparatus, machine, or system to consistently perform its intended 
or required function or mission, on demand and without degradation or failure. 
 
Reliability design using dynamic programming is used to solve a problem with a multiplicative 
optimization function. The problem is to design a system which is composed of several devices 
connected in series (below Fig-3.3(b)). Let r; be the reliability of device D; (i.e. r; is the probability 

that device i will function properly). Then, the reliability of the entire system is πri. Even if the 

individual devices are very reliable (the ri's are very close to one), the reliability of the system may 

not be very good.  
 
 

                              
 
                                   Fig-3.3(a) Devices connected in series 
 

                
      
 
                            Fig-3.3(b) Multiple Devices Connected in Parallel in each stage 
 
 
Multiple copies of the same device type are connected in parallel (Fig-3.3(b)) through the use of 
switching circuits. The switching circuits determine which devices in any given group are 
functioning properly. They then make use of one such device at each stage. 
 

If stage i contains mi copies of device Di then the probability that all mi have a malfunction  

is (1 - ri)
mi

 . Hence the reliability of stage i becomes 1 - (1 - ri )
mi. Thus, if ri = 0.99 and mi = 2 

the stage reliability becomes 0.9999. In any practical situation, the stage reliability will be a little 

less than 1 - (1 - ri )
mi because the switching circuits themselves are not fully reliable. Also, failures 

of copies of the same device may not be fully independent (e.g. if failure is due to design defect). Let 

us assume that the reliability of stage i is actually given by a function Φi(mi), 1<=i<=n. (It is 

quite conceivable that Φi(mi) may decrease after a certain value of m ;). The reliability of the 

system of stages is ∏1<=i<=n Φi(mi). 

 
Our problem is to use device duplication to maximize reliability. This maximization is to be carried 
out under a cost constraint.  
 

Let ci be the cost of each unit of device i and let c be the maximum allowable cost of the system 

being designed.  
We wish to solve the following maximization problem: 
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maximize ∏1<=i<=n Φi(mi) 

 

subject to ∑1<=i<=n cimi <=c 

 
mi>=1 and integer i, 1<=i<=n 
 
A dynamic programming solution may be obtained in a manner similar to that used for the knapsack 

problem. Since, we may assume each ci; > 0, each mi must be in the range 1<=mi<=ui where 

 

ui = └( c + ci - ∑1 to n cj ) / ci┘ 

 
 

The upper bound ui follows from the observation that mj>=1. An optimal solution m 1 , m 2, ••• , 

mn is the result of a sequence of decisions, one decision for each mi. 

Letfi(x) represent the maximum value of Φ(mj), 1<=j<=i subject to the constraints  

∑1<=j<=i cjmj <=x and 1<=mj<=uj, 1<=j<=i. Then, the value of an optimal solution is fn(c). The 

last decision made requires one to choose mn from one of { l, 2, 3, ... , un.}. Once a value for mn has 
been chosen, the remaining decisions must be such as to use the remaining funds c - cnmn in an 
optimal way. The principal of optimality holds and  
 

                  fn(c) = max 1<=mn<=un{ Φn(mn) fn-1(c – cnmn) } 
 
 
For any fi(x),i>=1 this equation generalizes to 
 
 

                      fi(x) = max 1<=mi<=ui{ Φi(mi) fi-1(c – cimi) } 

 
 
 

S.NO RGPV QUESTIONS Year Marks 
Q.1    
Q.2    

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unit-III/Lecture-06 

Problems based on Reliability design 
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Problems based on Reliability design: 
 
Q.1 Design a three stage system with device types D1,D2,D3. The costs are Rs. 30, Rs. 15 and Rs. 
20 respectively. The cost of the system is to be no more than Rs. 105. The reliability of each device 
type is 0.9,0.8 and 0.5 respectively. 
Solution: 
We will first compute u1, u2, u3 using following formula. 
 ui = (C + Ci – sigma Cj )/ Ci  
For computing ui 
   u1 = 2(approx value) 
For computing u2 
   u2 = 3(approx value) 
For computing u3 
   u3 = 3 
Hence  (u1 ,u2 ,u3)  
Computing subsequences- 
   S0 = (1,0) 
Let Si consist of tuples of the form (f, x) =(r, c) 
S0 = {(1,0)} 
 
For device D1 for 1 D1  
r1=0.9,c1=30 
S1

1 = {(0.9, 30)} 
For device D1 for 2 D1 
 
m1=2(2 D1 device in parallel) 
Reliability of stage 1 = 1-(1- r1)

 2 
Reliability of stage 1 = 1-(1- 0.9) 2 = 0.99 
Cost =30*2 = 60 
S1

2 = {(0.99, 60) } 
 
S1 = {(0.9, 30), (0.99, 60) } 
 
S1 = {(0.9, 30), (0.99, 60) } 
 
For one Device D2:-  
S2

1  = {(0.72, 45), (0.792, 75) } 
 
For two Device D2:- 
S2

2 = {(0.864, 60), (0.9504, 90) } 
 
For three Device D2:- 
S2

3 = {(0.8928, 75), (0.98208, 105) }  
 
S2 = {(0.72, 45), (0.792, 75), (0.864, 60),(0.9504, 90), (0.8928, 75), (0.98208, 105) } 
 
(0.792, 75), (0.9504, 90) is eleminated due to purging or dominance rule and  (0.98208, 105) is 
eleminated due to access cost 105. 
After this we got  
S2 = { (0.72, 45), (0.864, 60), (0.8928, 75) } 
 
For one Device D3:- 
S3

1  = { (0.36, 65), (0.432, 80), (0.4464, 95) } 
 
For Two Device D3:- 
S3

2  = { (0.54, 85), (0.648, 100)} 
 
For Three Device D3:- 
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S3

3 = { (0.63, 105) } 
 
Now we are going to find S3  
S3  = { (0.36, 65), (0.432, 80), (0.4464, 95), (0.54, 85), (0.648, 100), (0.63, 105) } 
Due to purging rule after elimination we get 
S3  = { (0.36, 65), (0.432, 80), (0.54, 85), (0.648, 100),} 
Now  
The best design has a reliability of 0.648 and a cost of 100. 
Tracing back through Si ‘s  
We determine that m1 = 1, m2 = 2, m3 = 2 
 
 
 

S.NO RGPV QUESTIONS Year Marks 

Q.1    
Q.2    
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Floyd-Warshall algorithm 
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Floyd-Warshall algorithm:[RGPV/June-2013(7),2014(7)] 
Floyd-Warshall algorithm is a procedure, which is used to find the shortest (longest) paths among all 
pairs of nodes in a graph, which does not contain any cycles of negative lenght. The main advantage 
of Floyd-Warshall algorithm is its simplicity. 
 

Description 
Floyd-Warshall algorithm uses a matrix of lengths D0 as its input. If there is an edge between nodes i 
and j, than the matrix D0 contains its length at the corresponding coordinates. The diagonal of the 
matrix contains only zeros. If there is no edge between edges i and j, than the position (i, j) contains 
positive infinity.  
 
In other words, the matrix represents lengths of all paths between nodes that does not contain any 
intermediate node. 
In each iteration of  Floyd-Warshall algorithm is this matrix recalculated, so it contains lengths of 
paths among all pairs of nodes using gradually enlarging set of intermediate nodes. The matrix D1, 
which is created by the first iteration of the procedure, contains paths among all nodes using exactly 
one (predefined) intermediate node. D2 contains lengths using two predefined intermediate nodes. 
Finally the matrix Dn uses n intermediate nodes. This transformation can be described using the 
following recurrent formula: 
 
Floyd’s Algorithm:  
Define the notation Dk[i, j], 1  i, j  n, and 0  k  n, that stands for the shortest distance (via a 
shortest path) from node i to node j, passing through nodes whose number (label) is  k.  Thus, when 
k = 0, we have 
      D0[i, j] = W[i][j] = the edge weight from node i to node j 
This is because no nodes are numbered  0 (the nodes are numbered 1 through n).  In general, when 
k  1,  
  
                  Dk[i, j] = min(Dk –1[i, j], Dk –1[i, k] + Dk –1[k, j]) 
The reason for this recurrence is that when computing Dk[i, j], this shortest path either doesn’t go 
through node k, or it passes through node k exactly once.  The former case yields the value Dk –1[i, j]; 
the latter case can be illustrated as follows:  
 

 
 
 
 
Implementation of Floyd’s Algorithm: 
 Input: The weight matrix W[1..n][1..n] for a weighted  directed graph, nodes are labeled 1 
through n.   
Output: The shortest distances between all pairs of the nodes, expressed in an n  n matrix. 
 
Algorithm: 
Create a matrix D and initialize it to W. 
 for k =  1 to n do  
      for  i = 1 to n do 
           for j = 1 to n do 
                D[i][j] = min(D[i][j], D[i][k] + D[k][j]) 
 
Note that one single matrix D is used to store Dk–1 and Dk, i.e., updating from Dk–1 to Dk is done 
immediately.  This causes no problems because in the kth iteration, the value of Dk[i, k] should be the 
same as it was in Dk–1[i, k]; similarly for the value of Dk[k, j].  The time complexity of the above 
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algorithm is O(n3) because of the triple-nested loop; the space complexity is O(n2) because only one 
matrix is used. 
 
Example: We demonstrate Floyd’s algorithm for computing Dk[i, j] for k = 0 through k = 4, for   

the following weighted directed graph:   

                            
Solution: 
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