
UNIT-5 

UNIT-5/LECTURE-1 

INTRODUCTION TO  INFORMATION THEORY 

 

The main role of information theory was to provide the engineering and scientific communities 

with a mathematical framework for the theory of communication by establishing the 

fundamental limits on the performance of various communication systems. Its birth was 

initiated with the publication of the works of Claude E. Shannon who stated that it is possible to 

send in-formation-bearing signals at axed rate through a noisy communication channel with an 

arbitrarily small probability of error as long as the communication rate is below a certain 

quantity that depends on the channel characteristics; he baptized. this quantity with the name 

of channel capacity. He further pro-claimed that random sources {such as speech, music or 

image signals } possess an irreducible complexity beyond which they cannot be compressed 

distortion-free. He called this complexity the source entropy. He went on asserting that if a 

source has an entropy that is less than the capacity of a communication channel, then 

asymptotically error free transmission of the source over the channel can be achieved. 

 

 
 

 

 

A simple model of a general communication system is depicted in Figure 1.1. 

 

Source: The source is usually modeled as a random process (the necessary background 

regarding random processes is introduced in Appendix B). It can be discrete (Finite or countable 

alphabet) or continuous (uncountable alphabet) in value and in time.  
 

Source Encoder: Its role is to represent the source in a compact fashion by removing its 

unnecessary or redundant content (i.e., compression). Channel Encoder: Its role is to enable 
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the reliable reproduction of the source encoder output after its transmission through a noisy 

communication channel. This is achieved by adding redundancy to the source encoder output.  
 

Modulator: It transforms the channel encoder output into a waveform suitable for 

transmission over the physical channel. This is usually accomplished by varying the parameters 

of a sinusoidal signal in proportion with the data provided by the channel encoder output.  
 

Physical Channel: It consists of the noisy (or unreliable) medium that the transmitted 

waveform traverses. It is usually modeled via a conditional (or transition) probability 

distribution of receiving an output given that a specific input was sent.  
 

Receiver Part: It consists of the demodulator, the channel decoder and the source decoder 

where the reverse operations are performed. The destination represents the sink where the 

source estimate provided by the source decoder is reproduced. 
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UNIT-5/LECTURE-2 

UNCERTAINTY AND INFORMATION 

 

 Let E be an event with probability Pr(E), and let I(E) represent the amount of 

information you gain when you learn that E has occurred (or equivalently, the amount of 

uncertainty you lose after learning that E has happened). Then a natural question to ask is 

\what properties should I(E) have?" The answer to the question may vary person by person. 

Here are some common properties that I(E), which is called the self-information, is reasonably 

expected to have. 
 

1. I(E) should be a function of Pr(E).  
 

In other words, this property says that I(E) = I(Pr(E)), where I(¢) is a function defined over 

an event space, and I(¢) is a function defined over [0; 1]. In general, people expect that 

the less likely an event is, the more information you have gained when you learn it has 

happened. In other words, I(Pr(E)) is a decreasing function of Pr(E).  
 

2. I(Pr(E)) should be continuous in Pr(E).  
 

Intuitively, we should expect that a small change in Pr(E) corresponds to a small change in 

the uncertainty of E.  

 

3. If E1 and E2 are independent events, then I(E1 \ E2) = I(E1) + I(E2), or equivalently, I(Pr(E1) £ 

Pr(E2)) = I(Pr(E1)) + I(Pr(E2)).  

This property declares that the amount of uncertainty we lose by learning that both E1 
and E2 have occurred should be equal to the sum of individual uncertainty losses for 
independent E1 and E2.  
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UNIT-5/LECTURE-3 

ENTROPY 

 

Entropy is a measure of the amount of information (or uncertainty) contained in the source. 

The source can be modeled as a random process, which is a collection of random variables 

indexed through an index set (cf. Appendix B). For simplicity, we first assume that the index set 

associated with the random process corresponding to the source consists of only one index. It 

is also assumed that the source alphabet X is finite. Then as indicated in the previous 

subsection, the self-information can be probabilistically defined as: 
 

I(x) = - log PX (x); 
 
Where PX (x) is the probability distribution of the source X.  

 

 

This definition fits the intuition that a less likely outcome will bring more information. By 

extending the concept, entropy is defined as follows. 

 

 

Entropy 

For a source X, the entropy H(X) is defined by 

  
  

By the above definition, entropy can be interpreted as the expected or average amount of 

(self-) information you gain when you learn that one of the lXl out-comes has occurred, where 

lXl is the cardinality of X. Another interpretation is that H(X) is a measure of uncertainty of 

random variable X. Sometimes, H(X) is also written as H(PX ) for notation convenience. 

 

 
 

When the base of the logarithm operation is 2, entropy is expressed in bits; when the 

natural logarithm is employed, entropy is measured in nats. For ex-ample, the entropy of a fair 

coin source is 1 bit or log(2) nat. 

 

 

Example:- 

 Let X be a random variable with PX (1) = p and PX (0) = 1 - p.  

 

Then H(X) = -p log p - (1-p) log(1-p).  

 

This is called the binary entropy function. 
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Joint entropy and conditional entropy  

 

We now consider the case where the index set associated with the random source consists of 

two indexes. Then the self-information of such a source is probabilistically defined as:  
I(x; y) = - log P (X;Y) (x; y); 

 

 

Joint entropy  

 
 

Conditional entropy 

 
 

Relationship Between different types of Entropy 

 

 
 

 

 

 

 

 

 RGPV QUESTIONS Year Marks 

Q.1 What is entropy? show that the entropy is 

maximum when all the symbols are 

equiprobable.Assume M=2. 

DEC-2012, 10 

Q.2 What is entropy? show that the entropy is 

maximum when all the symbols are 

equiprobable.Assume M=3. 

DEC-2013,DEC-2014 7,7 
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UNIT-5/LECTURE-4 

MUTUAL INFORMATION 

 

MUTUAL INFORMATION 

 

For two random variables X and Y , the mutual information between X and Y is the reduction in 

the uncertainty of Y due to the knowledge of X (or vice versa).  

 

For example the mutual information of the channel is the first argument X1. A dual definition of 

mutual information states that it is the average amount of information that Y has (or contains) 

about X or X has (or contains) about Y . Under this definition, we can say that the shared (or 

mutual) uncertainty (or information) between channel sender and channel receiver is 

Uncertainty X1. 

 
 
We can think of the mutual information between X and Y in terms of a channel whose input is X 

and whose output is Y . Thereby the reduction of the uncertainty is by definition the total 

uncertainty of X (i.e. H(X))  minus the uncertainty of X after For a source X, the entropy H(X) is 

defind by observing Y (i.e. H(XjY ) Mathematically, it is 

 

 

 
 

 

Properties of mutual information  
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              Figure : Relation between entropy and mutual information 

 

 

 

 

 

 RGPV QUESTIONS Year Marks 

Q.1 Find the mutual information and channel 

capacity of the channel shown in figure 

below. 

Given P(X1)= 0.6 and P(X2) = 0.4 

DEC 2013 

 
7 
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UNIT-5/LECTURE-5 

SOURCE CODING THEOREM,INFORMATION CAPACITY THEOREM 

 

 Shannon–Hartley theorem 

 

In information theory, the Shannon–Hartley theorem tells the maximum rate at which 

information can be transmitted over a communications channel of a specified bandwidth in the 

presence of noise. It is an application of the noisy channel coding theorem to the archetypal 

case of a continuous-time analog communications channel subject to Gaussian noise. 

 

 The theorem establishes Shannon's channel capacity for such a communication link, a bound 

on the maximum amount of error-free digital data (that is, information) that can be transmitted 

with a specified bandwidth in the presence of the noise interference, assuming that the signal 

power is bounded, and that the Gaussian noise process is characterized by a known power or 

power spectral density. The law is named after Claude Shannon and Ralph Hartley. 

 

Statement of the theorem 

Considering all possible multi-level and multi-phase encoding techniques, the Shannon–Hartley 

theorem states the channel capacity C, meaning the theoretical tightest upper bound on the 

information rate (excluding error correcting codes) of clean (or arbitrarily low bit error rate) 

data that can be sent with a given average signal power S through an analog communication 

channel subject to additive white Gaussian noise of power N, is: 

 

where 

C is the channel capacity in bits per second; 

 

B is the bandwidth of the channel in hertz (passband bandwidth in case of a modulated 

signal); 

 

S is the average received signal power over the bandwidth (in case of a modulated  

signal, often denoted C, i.e. modulated carrier), measured in watts (or volts squared); 

 

N is the average noise or interference power over the bandwidth, measured in watts (or 

volts squared); and 

 

S/N is the signal-to-noise ratio (SNR) or the carrier-to-noise ratio (CNR) of the 

communication signal to the Gaussian noise interference expressed as a linear power 

ratio (not as logarithmic decibels). 
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Shannon's source coding theorem 

 

This article is about the theory of source coding in data compression. For the term in computer 

programming, see Source code. 

In information theory, Shannon's source coding theorem (or noiseless coding theorem) 

establishes the limits to possible data compression, and the operational meaning of the 

Shannon entropy. 

The source coding theorem shows that (in the limit, as the length of a stream of independent 

and identically-distributed random variable (i.d.) data tends to infinity) it is impossible to 

compress the data such that the code rate (average number of bits per symbol) is less than the 

Shannon entropy of the source, without it being virtually certain that information will be lost. 

However it is possible to get the code rate arbitrarily close to the Shannon entropy, with 

negligible probability of loss. 

The source coding theorem for symbol codes places an upper and a lower bound on the 

minimal possible expected length of code words as a function of the entropy of the input word 

(which is viewed as a random variable) and of the size of the target alphabet. 

 

 

 

 RGPV QUESTIONS Year Marks 

Q.1 
State and prove Shannon Hartley theorem.  

JUNE-2014 

 
7 
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UNIT-5/LECTURE-6 

CHANNEL CAPACITY 

Channel capacity 

In information theory, channel capacity is the tightest upper bound on the rate of information 

that can be reliably transmitted over a communications channel. By the noisy-channel coding 

theorem, the channel capacity of a given channel is the limiting information rate (in units of 

information per unit time) that can be achieved with arbitrarily small error probability.
[
 

Information theory, developed by Claude E. Shannon during World War II, defines the notion of 

channel capacity and provides a mathematical model by which one can compute it. The key 

result states that the capacity of the channel, as defined above, is given by the maximum of the 

mutual information between the input and output of the channel, where the maximization is 

with respect to the input distribution. 

 

 
 

 

 

Let and be the random variables representing the input and output of the channel, 

respectively. Let be the conditional distribution function of given , which is an 

inherent fixed property of the communications channel. Then the choice of the marginal 

distribution completely determines the joint distribution due to the identity 

 

which, in turn, induces a mutual information . The channel capacity is defined as 

 

Where the sup is taken over all possible choices of . 

 

 

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://www.rgpvonline.com/
http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Channel_%28communications%29
http://en.wikipedia.org/wiki/Noisy-channel_coding_theorem
http://en.wikipedia.org/wiki/Noisy-channel_coding_theorem
http://en.wikipedia.org/wiki/Channel_%28communications%29
http://en.wikipedia.org/wiki/Information_entropy
http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Claude_E._Shannon
http://en.wikipedia.org/wiki/World_War_II
http://en.wikipedia.org/wiki/Mutual_information
http://en.wikipedia.org/wiki/Conditional_distribution
http://en.wikipedia.org/wiki/Marginal_distribution
http://en.wikipedia.org/wiki/Marginal_distribution
http://en.wikipedia.org/wiki/Joint_probability_distribution
http://en.wikipedia.org/wiki/Mutual_information


UNIT-5/LECTURE-7 

CHANNEL MODELS 

Identity channel 

 

An identity channel has equal-size in input and output alphabets (lXl = lYl), and channel 

transition probability satisfying 

 

 
 
 
 
In such channel, H(Y l X) = 0. since no extra information provides by Y when X is given. As a 

consequence, 

 

 

 
 

 

and the channel capacity is 

 
 

 

Binary symmetric channels  

 

A binary symmetric channel (BSC) is a channel with binary input and output alphabet, and the 

probability for one input symbol to be complemented at the output is equal to that for another 

input symbol as shown in Figure. 
 
This is the simplest model of a channel with errors; yet it captures most of the complexity of 

the general problems. To compute the channel capacity of it 

 
         Figure: Binary symmetric channel. 
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Binary erasure channels  

 
The binary erasure channel (BEC) has a form similar to BSC, except that bits are erased with 

some probability. It is shown in Figure. 
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Figure : Binary erasure channel. 

 

 

 
 

 

 

 RGPV QUESTIONS Year Marks 

Q.1 For BSC shown in fig, find the channel 

capacity for E (Probability)=0.9 

 

JUNE-2014 

 

 

 

 

 

7 
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UNIT-5/LECTURE-8 

CHANNEL CODING 

Channel coding 

The purpose of channel coding theory is to find codes which transmit quickly, contain many 

valid code words and can correct or at least detect many errors. While not mutually exclusive, 

performance in these areas is a trade off. So, different codes are optimal for different 

applications. The needed properties of this code mainly depend on the probability of errors 

happening during transmission. In a typical CD, the impairment is mainly dust or scratches. 

Thus codes are used in an interleaved manner. The data is spread out over the disk. 

 Although not a very good code, a simple repeat code can serve as an understandable example. 

Suppose we take a block of data bits (representing sound) and send it three times. At the 

receiver we will examine the three repetitions bit by bit and take a majority vote. The twist on 

this is that we don't merely send the bits in order. We interleave them. The block of data bits is 

first divided into 4 smaller blocks. Then we cycle through the block and send one bit from the 

first, then the second, etc. This is done three times to spread the data out over the surface of 

the disk. In the context of the simple repeat code, this may not appear effective. However, 

there are more powerful codes known which are very effective at correcting the "burst" error 

of a scratch or a dust spot when this interleaving technique is used. 

Other codes are more appropriate for different applications. Deep space communications are 

limited by the thermal noise of the receiver which is more of a continuous nature than a bursty 

nature. Likewise, narrowband modems are limited by the noise, present in the telephone 

network and also modeled better as a continuous disturbance. Cell phones are subject to rapid 

fading. The high frequencies used can cause rapid fading of the signal even if the receiver is 

moved a few inches. Again there are classes of channel codes that are designed to combat 

fading. 

 

Linear codes 

The term algebraic coding theory denotes the sub-field of coding theory where the properties 

of codes are expressed in algebraic terms and then further researched. 

Algebraic coding theory is basically divided into two major types of codes: 

1. Linear block codes 

2. Convolution codes. 
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It analyzes the following three properties of a code – mainly:code word length 

 total number of valid code words 

 the minimum distance between two valid code words, using mainly the Hamming 

distance, sometimes also other distances like the Lee distance. 

Linear block codes 

Linear block codes have the property of  linearity, i.e. the sum of any two codeword is also a 

code word, and they are applied to the source bits in blocks, hence the name linear block 

codes. There are block codes that are not linear, but it is difficult to prove that a code is a good 

one without this property. 

Linear block codes are summarized by their symbol alphabets (e.g., binary or ternary) and 

parameters (n,m,dmin)
[
 where 

1. n is the length of the codeword, in symbols, 

2. m is the number of source symbols that will be used for encoding at once, 

3. dmin is the minimum hamming distance for the code. 

There are many types of linear block codes, such as 

1. Cyclic codes (e.g., Hamming codes) 

2. Repetition codes 

3. Parity codes 

4. Polynomial codes (e.g., BCH codes) 

5. Reed–Solomon codes 

6. Algebraic geometric codes 

7. Reed–Muller codes 

8. Perfect codes. 

Block codes are tied to the sphere packing problem, which has received some attention over 

the years. In two dimensions, it is easy to visualize. Take a bunch of pennies flat on the table 

and push them together. The result is a hexagon pattern like a bee's nest. But block codes rely 

on more dimensions which cannot easily be visualized. The powerful (24,12) Golay code used in 

deep space communications uses 24 dimensions. If used as a binary code (which it usually is) 

the dimensions refer to the length of the codeword as defined above. 

The theory of coding uses the N-dimensional sphere model. For example, how many pennies 

can be packed into a circle on a tabletop, or in 3 dimensions, how many marbles can be packed 

into a globe. Other considerations enter the choice of a code. For example, hexagon packing 

into the constraint of a rectangular box will leave empty space at the corners. As the 

dimensions get larger, the percentage of empty space grows smaller. But at certain dimensions, 

the packing uses all the space and these codes are the so-called "perfect" codes. The only 
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nontrivial and useful perfect codes are the distance-3 Hamming codes with parameters 

satisfying (2
r
 – 1, 2

r
 – 1 – r, 3), and the [23,12,7] binary and [11,6,5] ternary Golay codes.

[
 

Another code property is the number of neighbors that a single codeword may have.
[
Again, 

consider pennies as an example. First we pack the pennies in a rectangular grid. Each penny will 

have 4 near neighbors (and 4 at the corners which are farther away). In a hexagon, each penny 

will have 6 near neighbors. When we increase the dimensions, the number of near neighbors 

increases very rapidly. The result is the number of ways for noise to make the receiver choose a 

neighbor (hence an error) grows as well. This is a fundamental limitation of block codes, and 

indeed all codes. It may be harder to cause an error to a single neighbor, but the number of 

neighbors can be large enough so the total error probability actually suffers. 

Properties of linear block codes are used in many applications. For example, the syndrome-

coset uniqueness property of linear block codes is used in trellis shaping, one of the best known 

shaping codes. This same property is used in sensor networks for distributed source coding 

Convolutional codes 

The idea behind a convolution code is to make every codeword symbol be the weighted sum of 

the various input message symbols. This is like convolution used in LTI systems to find the 

output of a system, when you know the input and impulse response. 

So we generally find the output of the system convolution encoder, which is the convolution of 

the input bit, against the states of the convolution encoder, registers. 

Fundamentally, convolution codes do not offer more protection against noise than an 

equivalent block code. In many cases, they generally offer greater simplicity of implementation 

over a block code of equal power. The encoder is usually a simple circuit which has state 

memory and some feedback logic, normally XOR gates. The decoder can be implemented in 

software or firmware. 

The Viterbi algorithm is the optimum algorithm used to decode convolution codes. There are 

simplifications to reduce the computational load. They rely on searching only the most likely 

paths. Although not optimum, they have generally been found to give good results in the lower 

noise environments. 

Convolution codes are used in voice band modems (V.32, V.17, and V.34) and in GSM mobile 

phones, as well as satellite and military communication devices. 

 

 RGPV QUESTIONS Year Marks 

Q.1 What is coding efficiency .Show that the  

coding efficiency is maximum when 

p(0)=p(1) 

DEC-2012 10 
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UNIT-5/LECTURE-9 

HUFFMAN CODING,SHANNON FANO ELIAS CODING 

 
Huffman code : a variable-length optimal code 

 

In this subsection, we will introduce a simple optimal variable-length code, named Huffman 

code. Here optimality means that it yields the minimum average codeword length among all 

codes on the same source. We now begin our examination of Huffman coding with a simple 

observation. 

 

        Give a source with source alphabet f1; : : : ; Kg and probability fp1; : : : ; pK g. Let `i be the 
binary codeword length of symbol i. Then there exists an optimal uniquely-decodable variable-
length code satisfying: 
 

 
 

  2.The two longest codeword have the same length.  
 
  3.The two longest codeword differ only in the last bit and correspond to the two least-

frequent symbols.  

 

Proof: First, we note that any optimal code that is uniquely decodable must satisfy the Kraft 

inequality. In addition, for any set of codeword lengths that satisfy the Kraft inequality, there 

exists a prefix code who takes the same set as its set of codeword lengths. Therefore, it succes 

to show that there exists an optimal prefix code satisfying the above three properties. 

 

1. Suppose there is an optimal prfix code violating the observation. Then we can 

interchange the codeword for symbol i with that for symbol j, and yield a better code.  
 

2. Without loss of generality, let the probabilities of the source symbols satisfy  
 

  
 

3. Since all the code words of a prefix code reside in the leaves, we can interchange the 

siblings of two branches without changing the average codeword length. Property 2 

implies that the two least-frequent code words has the same codeword length. Hence, by 

repeatedly interchanging the siblings of a tree, we can result in a prefix  

code which meets the requirement.  

 

The above observation proves the existence of an optimal prefix code that statistics the 

stated properties. As it turns out, Huffman code is one of such codes. In what follows, we will 

introduce the construction algorithm of Huffman code. 
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We now give an example of Huffman encoding. 

 

Example : Consider a source with alphabet f1; 2; 3; 4; 5; 6g with probability 0:25; 0:25; 0:25; 

0:1; 0:1 and 0:05, respectively. By following the Huffman encoding procedure as shown in 

Figure 3.6, we obtain the Huffman code as 

 

00; 01; 10; 110; 1110; 1111: 

 

 

0:25 

 (00)  

0:25 

00  

0:25 

00  

0:25 

00  

0:5 

0  

1:0 

 

 (01) 

 

01 

 

01 

 

01 

    

0:25 

 

0:25 

 

0:25 

 

0:25 

      

 (10) 

 

10 

 

10 

 

1 

  

1 

   

0:25 

 

0:25 

 

0:25 

 

0:5 

 

0:5 

   

 (110) 

 

110 

 

11 

       

0:1 

 

0:1 

 

0:25 

         

(1110) 111 

           

0:1 0:15 

                            

(1111) 

              

0:05 

               

                 

                 

 

 

 

Example: 

X 

1 2 3 4 5 

 

 

0.25 0.25 0.2 0.15 0.15  

 

 

We can combine the symbols 4 and 5 into a single source symbol, with a probability assignment 

0.30. Proceeding this way, combining the two least likely symbols into one symbol until we are 

nally left with only one symbol, and then assigning codeword to the symbols, we obtain the 

following table: 
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This code has average length L = 2.3 bits and H(X ) = 2.286. 

 

 

Shannon-Fano-Elias code 
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Shannon-Fano Coding 
 
 

Shannon-Fano source encoding follows the steps 

 
1. Order symbols mi  in descending order of probability  
 

2. Divide symbols into subgroups such that the subgroup’s probabilities (i.e. information 

contests) are as close as possible can be two symbols as a subgroup if there are two close 

probabilities (i.e. information contests), can also be only one symbol as a subgroup if none 

of the probabilities are close 
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3. Allocating codeword: assign bit 0 to top subgroup and bit 1 to bottom subgroup. 

4. Iterate steps 2 and 3 as long as there is more than one symbol in any subgroup  

5. Extract variable-length codewords from the resulting tree (top-down)  

 

 

Example 

 

 
 

 
• Less probable symbols are coded by longer code words, while higher probable symbols are 

assigned short codes  
 

• Entropy for the given set of symbols: H = 2.6906 (bits/symbol)  

 

• Average code word length with Shannon-Fano coding:  

 

                    0.47 · 2 + 0.33 · 3 + 0.2 · 4 = 2.73   (bits/symbol) 
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Example 

 

 
 

 

 

 RGPV QUESTIONS Year Marks 

Q.1 Apply the Shannon-fano coding procedure to find 

coding efficiency for the following message. 

[X]=[X1,X2,X3,X4,X5,X6 ,X7,X8] 

[P(x)]=[0.2,0.2,0.15,0.15,0.1,0.1,0.05.0.05] 

DEC-2012 10 

Q.2 Apply the Shannon fano coding procedure for the 

following essemble and find the coding efficiency 

(take M=2). 

[x] = [x1      x2     x3      x4      x5    x6      x7       x8] 

[p] = [1/4  1/8  1/16  1/16  1/16  ¼    1/16 1/8] 

JUNE-2014 7 
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