
 

  

Unit:01 

Signal  Analysis:  Time  domain  and  frequency  domain  representation  of  signal,  Fourier  Transform  and  its 

properties,  Transform  of  Gate,  Periodic  gate,  Impulse  periodic  impulse  sine  and  cosine  wave,  Concept  of 

energy density and power, Power density of periodic. 

 

1.1 Time domain and frequency domain representation of signal 

An  electrical  signal  either,  a  voltage  signal  or  a  current  signal  can  be  represented  in  two  forms:  These  two 

types of representations are as under: 

i) Time Domain representation-: In time domain representation a signal is a time varying quantity as 

shown in Fig.1.1 

 

 

 

 

 

 

 

Fig 1.1 An arbitrary time domain signal 

 

ii) Frequency Domain  Representation:  In  frequency  domain,  a  signal  is  represented  by its  frequency 

spectrum as shown in Fig 1.2 

 

 

 

 

 

Fig 1.2 Frequency domain representation of time domain signal 

1.2 Fourier Transform and its properties 

Fourier Transform pair 

Fourier transform may be expressed as  

X(w)=F[x(t)]=∫∞−∞
− dt 

In the above equation X(w) is called the Fourier transform of x(t). In other words X(w) is the frequency domain 

representation of time domain function x(t). This means that we are converting a time domain signal into its 

frequency  domain  representation  with  the  help  of  fourier  transform.  Conversely  if  we  want  to  convert 

frequency domain signal into corresponding time domain signal, we will have to take inverse fourier transform 

of frequency domain signal. Mathematically, Inverse fourier transform. 

− [ ] = = 𝜋 ∫∞

−∞
 

Example  

Q.1 Find the fourier transform of a single-sided exponential function  − . 

0 t 

V(t) 

0 w 

V(w) 
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Solution: −  is single sided function because her the main function −  is multiplied by unit step 

function u(t), then resulting signal will exist only for t>0. 

 

u(t)=    {1   for t>1 

={0  for elsewhere 

Now, given that x(t)= −  

 

X(w)=F[x(t)]=∫∞−∞ − dt 

Or  X(w)=∫ −  ∞−∞ − dt 

 

=∫ −  ∞ − dt 

 

=∫ − +∞
dt 

 −+ [ −∞ -  ]= 
−+ [0-1]= +  

To obtain the above expression in the proper form we write 

X(w)= −+  *
−−  

 

X(w)= −+  = +   -  +  

Obtaining the above expression in polar form 

X(w)=√ +  
− − 𝑤𝑎  

 

As we know that 

X(w)=| | 𝜑  
On comparision amplitude spectrum | |=√ +  𝜑 = − −  

 

Properties of Continuous Time Fourier Transform (CTFS)  

1. Time Scaling Function  

Time scaling property states that the time compression of a signal results in its spectrum expansion 

and time expansion of the signal results in its spectral compression. Mathematically, 

If  x(t)                         X(w)   

Then, for any real constant a, 
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x(at)                         | |X( )   

proof: The general expression for fourier transform is 

 

X(w)=F[x(t)]=∫∞−∞
− dt 

Now F[x(at)]=∫∞−∞
− dt 

Putting  

At=y 

We have dt=   

Case (i): When a is positive real constant  

F[x(at)]= ∫∞−∞ − 𝑤𝑎    =    ∫∞−∞ − 𝑤𝑎 = X( ) 

Case (ii): When a is negative real constant  

F[x(at)]=      −  X( ) 

Combining two cases, we have  

F[x(at)]= | |X( )  Or  x(at) | |X( )   

The function x(at) represents the function x(t) compressed in time domain by a factor a. Similarly, a function 

X( ) represents the function X(w) expanded in frequency domain by the same factor a. 

 

2. Linearity Property 

Linearity property states that fourier transform is linear. This means that 

If  x1(t)                         X1(w)   

 And   x2(t)                         X2(w)   

Then  a1 x1(t)  + a2 x2(t)                           a1X1(w)  + a2X2(w)   

 

3. Duality or Symmetry Property 

 

If  x(t)                         X(w)   

Then   X t                             2 π -w)   

Proof 

The general expression for fourier transform is  − [ ] = = 𝜋 ∫∞

−∞
 

Therefore, 

 

 x(-t)= 𝜋 ∫ −∞−∞  
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2π -t)= ∫ −∞−∞  

Since w is a dummy variable, interchanging the variable t and w we have 

2π -w)= ∫ −∞−∞ =F[X(t)] 

Or    F[X(t)]= 2π -w) 

 

Or    X(t)                      2π -w) 

For an even function x(-w)=x(w) 

Therefore , X(t) 2π  

 

 

Example (1) 

The fourier transform F[ − ] is equal to + 𝜋 . Therefore F[ + 𝜋 ] is equal to 

Solution: 

Using Duality property of Fourier Transform, we have  

If  x(t)                         X(f)   

Then   X(t)                            x(-f)   

Therefore, −                   + 𝜋  

Then + 𝜋                         −  

 

4. Time Shifting property 

Time Shifting property states that a shift in the time domain by an amount b is equivalent to multiplication by −  in the frequency domain.  This means that magnitude spectrum | | 
Re ai s i ha ged ut phase spe t u  θ  is ha ged  -wb.  

If  x(t)                         X(w)   

Then   X(t-b)                            X(w)  
−  

Proof: X(w)=F[x(t)]=∫∞−∞
− dt 

And  F[x(t-b)]= ∫ −∞−∞
− dt 

Putting t-b=y, so that dt=dy 

 

F[x(t-b)]= ∫∞−∞
− + dy =∫∞−∞

− −  dy 

 

Or     F[x(t-b)]= − ∫∞−∞
−  dy 
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Since y is a dummy variable, we have  

F[x(t-b)]= − X(w)=X(w) −  

Or x(t-b) X(w) −  
 

5. Frequency Shifting Property 

Frequency shifting property states that the multiplication of function x(t) by  is equivalent to shifting 

its fourier transform X(w) in the positive direction by an amount  . This means that the spectrum X(w) is 

translated by an amount . hence this property is often called frequency translated theorem. 

Mathematically . 

If  x(t)                          X(w)   

Then    x(t)                        X(w-  )   

Proof: General expression for fourier transform is  

X(w)=F[x(t)]=∫∞−∞
− dt 

Now,   F[ x(t)] =    ∫∞−∞
− dt 

Or    F[ x(t)] =    ∫∞−∞
− − dt 

Or    F[ x(t)] =    X w −     𝑂        x(t)                            X(w-  )   

 

 
 

6. Time Differentiation Property  

The time differentiation property states that the differentiation of a function x(t) in the time domain is 

equivalent to multiplication of its fourier transform by a factor jw. Mathematically  

If  x(t)                          X(w)   

Then    x(t)                          jw X(w)  

Proof: The general expression for fourier transform is  

− [ ] = = 𝜋 ∫∞

−∞
 

Taking differentiation, we have  

  = 𝜋 [∫∞−∞ ] 

Interchanging the order of differentiation and integration, we have  

  = 𝜋 ∫ [ ]∞−∞  

 

  = 𝜋 ∫  ∞−∞  
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Or   = − [ ] 

Or  F[ ] =  

Or                              Hence proved 

 

 

1.3 Transform of Gate 

A gate function is rectangular pulse. Figure 1.3 shows gate function. The function or rectangular pulse shown 

in figure 1.3 is written as rect (𝜏). 

 

 

 

 

 

 

 

 

Fig.1.3 A Gate Function 

From the above figure it is clear that rect (𝜏) represents a gate pulse of height or amplitude unity and width 𝜏. 

x(t)=  rect (𝜏)  ={          −𝜏  < < 𝜏}    {      ℎ } 

 

Sampling Function Or Interpolation Function Or Sinc function 

The functions     is the si e o e  a gu e t  a d de oted  si . This fu tio  pla s a  i po ta t ole 
in signal processing. It is also known as the filtering or interpolating function. Mathematically, 

Sinc(x)=  

Or 

Sa(x)=  

 

 

 

 

 

 

 

 

 

 

Fig.1.4 Sample function 

0 

x(t) 

1 

−𝜏
 

𝜏
 

t 

𝜋 𝜋 0 

−𝜋 

− 𝜋 

− 𝜋 

𝜋 

Sinc(x) Or Sa (x) 
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From the figure, following points may be observed about the sampling function : 

(i) Sa(x) or sinc(x) is an even function of x. 

(ii) Sinc(x) =0 when sinx=0 except at x=0, where it is indeterminate. This means that sinc(x)=0 for 

x=± π , he e =± , ± …. 
(iii) Si  is the p odu t of os illati g sig al si  of pe iod 2π a d a de easi g fu tio  . 

Therefore, sinc(x) exhibits si usoidal os illatio s of pe iod 2π ith amplitude decreasing 

continuously as 1/x. 

Example 2: Find the fourier transform of the gate function shown in figure 1.5.  

 

 

 

 

 

 

 

 

Fig.1.5 

Sol.         x(t)=  rect (𝜏)  ={          −𝜏  < < 𝜏}    {      ℎ } 

 

X(w)=F[x(t)]=∫∞−∞
− dt 

  

X(w)=F[x(t)]=∫ rect 𝜏   ∞−∞
− dt 

  

=∫ .𝜏−𝜏 − dt= [− −𝑗𝑤𝑡]−𝜏
𝜏

 

 

=
−

[
− 𝑤𝜏

-
𝑤𝜏

]     

= [
𝑤𝜏

-
− 𝑤𝜏

]    --------(1) 

 

We know that 𝜃=cos𝜃 +jsin𝜃 

And   − 𝜃=cos𝜃 –jsin𝜃 

0 

x(t) 

1 

−𝜏
 

𝜏
 

t 
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Hence    2cos𝜃= 𝜃+ − 𝜃 

2jsin𝜃= 𝜃- − 𝜃 

Putting  𝜃=
𝜏
, we get 

 

2jsin
𝜏
=

𝑤𝜏
-

− 𝑤𝜏
  --------(2) 

From (1) and (2) 

X(w)= [2jsin
𝜏] 

By multiplying and dividing the equation by 𝜏 

= 𝜏𝜏[jsin
𝜏] 

= 𝜏𝑤𝜏 [sin
𝜏] 

= 𝜏 [
sin𝑤𝜏𝑤𝜏 ] 

= 𝜏sinc(
𝜏

 

Now, since sinc(x)=0, when x=± π 

Therefore, sinc(
𝜏 =0, when 

𝜏
=± π 

Or w=
=± nπ𝜏  

Figure 1.5 shows the plot of X(w)  
π𝜏  

 

 

 

 

 

 

 

 

 

 

 

π𝜏  

0 

− π𝜏  π𝜏− π𝜏  

− 6π𝜏  

6π𝜏  
π𝜏  

𝜏 Sinc(
𝜏
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Fig. 1.5 Sample Function 

 

 

 

1.4 Impulse Functions 

Unit Impulse functions: 

A unit impulse function was invented by P.A.M. Diarc and so it is also called as Delta function. It is denoted by 𝛿  ). 

Mathematically, 𝛿 =0 , t≠  

And,  ∫ 𝛿∞−∞ dt=1 

Figure 1.6 shows the graphical representation of an unit impulse function. The following points may be 

observed about an unit-impulse function: 

 

 

 

 

 

 

 

 

 

Fig.1.6 The Unit Impulse function 

i) The width of pulse is zero. This means that pulse exist only at t=0. 

ii) The height of the pulse goes to infinity 

iii) The area under the pulse-curve is always is always unity. 

 

Shifting Property of the Impulse function: 

If we take the product of unit impulse function 𝛿  and any given function x(t) which is continuous at 

t=0,then this product will provide the function x(t) existing only at t=0 since 𝛿  exist only at t=0. 

Mathematically, 

 ∫ 𝛿∞−∞ dt=x(0) ∫ 𝛿∞−∞ dt=x(0).1=x(0) 

The equation is also known as shifting or sampling property of the impulse function because the impulse shifts 

the value of x(t0 at t=0. This means that the value of x(t) has been sampled at t=0. to The shifting or sampling 

may be also done at any, instant t= , if we define the impulse function at the instant. Mathematically, ∫ 𝛿 −∞−∞ dt=x( ) 

The above equation states that the product of a continuous function x(t) with an impulse function 𝛿 −  

provides the sampled value of x(t) at t= . 

 

Q.1 Find the fourier transform of an impulse function x(t) = 𝛿  Also draw the spectrum 

Sol. Expression of the fourier transform is given by  

X(w)=F[x(t)]=∫∞−∞
− dt=∫ 𝛿∞−∞

− dt 

Using shifting property of impulse function  

X(w)=[ − ]at t=0 

t 0 

1 

𝛿  
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X(w)=1 𝛿                    1 

Hence the fourier transform of an impulse function is unity. 

 

 

 

 

 

 

 

Fig 1.7 

 

 

 

Figure 1.7 shows an unit impulse function and its fourier transform or spectrum. From the figure1.7 

it is clear that an unit impulse contains the entire frequency components having identical magnitude. This 

means that the bandwidth of the unit impulse function is infinite. Also, since spectrum is real, only magnitude 

spectrum is required. The phase spectrum  𝜃 =0, which means that all the frequency components are in 

the same phase. 

 

Q.(2) Find the inverse fourier transform of 𝛿(w) 

Solution. Inverse fourier transform is expressed as  − [ ] = = 𝜋 ∫∞

−∞
 

 

   − [𝛿 w ] = = 𝜋 ∫ 𝛿 w∞

−∞
 − [𝛿 w ]= 𝜋[ ]at w=0 − [𝛿 w ]= 𝜋[ ]= 𝜋.1  = 𝜋 

F[ 𝜋]= 𝛿 w) 

𝜋                   𝛿 w) 

1 𝜋𝛿 w) 

 

 

 

 

 

 

 

t 0 

1 

𝛿  

w 

==  

0 

1 

1 

t 

==  

0 
w

\

 

0 

𝜋𝛿  
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Fig.1.8 

This shows that the spectrum of a constant signal x(t)=1 an impulse function 2𝜋𝛿 . This can also be 

interpreted as that x(t) =1 is a d.c. signal which has single frequency. W=0(dc). 

 

Q.(3) Find the inverse fourier transform of 𝛿(w- ) 

Solution. Inverse fourier transform is expressed as  − [ ] = 𝜋 ∫∞

−∞
 

 

  Or − [𝛿 w − ] = 𝜋 ∫ 𝛿 w −∞

−∞
 

Using shifting or sampling property of impulse function, we get − [𝛿 w − ]= 𝜋[ ]at w =      − [𝛿 w − ]= 𝜋[ ] 

F[ 𝜋 ]= 𝛿 w − ) 

𝜋                   𝛿 w − ) 𝑂  

                   𝜋 𝛿 w − ) 

  The above expression shows that the spectrum of an overlasting exponential is a single impulse at w=0. 

Similarly,    −                    𝜋 𝛿 w + ) 

 

1.5 Fourier Transform of Cosine wave 

Q.4 Find the fourier transform of overlasting sinusoid cos . 

Solutio : We k o  that Eule ’s ide tit  is gi e    𝜃=cos𝜃 +jsin𝜃 

And ,  − 𝜃=cos𝜃 –jsin𝜃 

Hence    2cos𝜃= 𝜃+ − 𝜃 Or 

 

cos𝜃=
𝑗𝜃+ −𝑗𝜃

 

And 
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2jsin𝜃= 𝜃- − 𝜃 Or 

 

sin𝜃=
𝑗𝜃+ −𝑗𝜃

 

Hence,  cos =
𝑗𝑤 𝑡+ −𝑗𝑤 𝑡

 

We know that  

 

                   𝜋 𝛿 w − ) 𝐴            −                     𝜋 𝛿 w + ) 

 

So that   cos                    [ 𝜋 𝛿 w − )+ 𝜋 𝛿 w + ] 

Or 

   cos                    [𝜋 𝛿 w − )+ 𝜋 𝛿 w + ] 

 
1.6 Fourier Transform of Periodic Function 

Fourier transform of periodic function could also be found out. This means that Fourier transform may be used 

as a universal mathematical tool to analyze both periodic and non-periodic waveform over the entire interval. 

Let us find the fourier transform of periodic function x(t). x(t) may be expressed in terms of complex fourier 

series as  

x(t)=∑ 𝐶∞=−∞  
Taking fourier transform of both the side 

F[x(t)]=F[∑ 𝐶∞=−∞ ] =∑ 𝐶 . [ .∞=−∞ ] 
Using frequency shifting shifting theorem, we can write [ . ]= 𝜋 𝛿 w − ) 

 

Hence, F[x(t)]= ∑ 𝐶 𝜋 𝛿 w −∞=−∞ = 𝜋 ∑ 𝐶  𝛿 w −∞=−∞  

Hence, the fourier transform of a periodic function consist of a train of equally spaced impulses. These 

impulses are located at the harmonic frequencies of the signal and the strength or area of each impulse is 

given by 𝜋𝐶  .  

1.7 Concept of Energy Density 

An energy signal is one which has finite energy and zero average power. Hence, x(t) is an energy signal if  

0< < ∞  and P=0 

Where, E is the energy and P is the power of the signal x(t). All the practical non-periodic signals which are 

defined over finite-time (also called time limited signals) are energy signals. 

For continuous time signals energy of the signal is expressed as 

E=∫∞−∞  

Energy Spectral Density: 
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Let us consider an low pass signal which is applied to an ideal low pass filter as shown in figure 1.9.Figure 1.10 

shows the graph of transfer function H(w) of an ideal low pass filter. The response of output of a system is 

expressed as  

Y(w)=X(w)H(w) 

Here X(w)= Fourier transform of x(t) 

Y(w)= Fourier transform of y(t) 

Also the energy  of the output sig al t  a  e e p essed as usi g Pa se al’s theo e  

 

= 𝜋 ∫ | |∞−∞  

 Or  

= 𝜋 ∫ |𝐻 |−  

 

 

 

 

 

 

Fig.1.9 Low pass filter (LPF) 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.10 Transfer Function of an ideal low pass filter 

 

From figure 1.10 it can be observed that H(w)=0 for all the frequencies except for the narrow band -wm  

to  wm  .Therefore, the energy of the signal over this narrow band ∆ =2wm. will be  

= 𝜋 | | ∫ .−  = 𝜋 | | 2wm 

 

Putting 2wm= ∆  we get 

 = 𝜋 . | | ∆ =| | ∆    -------(1) 

From the above equation it is clear that  represents the contribution of energy due to the bandwidth (∆ ) 

of the signal including negative frequencies. Therefore energy contribution per unit bandwidth will be. 

w 

𝐻  

0 

1 

wm -wm 

∆w 

 

H(jw) 

Input 
Output 

X(w

y(t) 
x(t) 

Y(w) 
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𝐸∆  =| |     ------(2) 

Hence, | |  represents energy per unit bandwidth, and is known as Energy spectral density Or Energy 

density spectrum. 

It is generally denoted by Ψ(w). 

Hence , Ψ(w)= | |      ----(3) 

Now, we can find the relationship between energy densities of input and output (response) as under: 

Since, we know that Y(w)=H(w).X(w) 

Therefore, | | =|𝐻 | =|𝐻 | | |       ------(4) 

Now, let Ψy(w) be energy spectral density of output y(t) and Ψx(w) be energy spectral density of input x(t), 

then  Ψy(w)= | |     ------------(5) Ψx(w)= | |         ---------(6) 

From equation (4) and(5)  Ψy(w)= |𝐻 | | |  --------(7) 

From equation (6) and(7)  Ψy(w)= |𝐻 | Ψx(w)--------(7) 

This is the relationship between input and output spectral densities. 

 

Properties of Energy Spectral density function 

Property1: Total area under energy spectral density function is equal to the total energy of that signal 

Mathematically, 

E=∫ Ψ f∞−∞ df 

 

Property2: If x(t) is input to a linear time invariant (LTI) system with transfer function H(w) , then input and 

output energy spectral density function are related as   Ψo(w)= |𝐻 | Ψi(w) 
Where, Ψo(w)= output energy spectral density function Ψi(w)= input energy spectral density function  |𝐻 | =energy gain at frequency w. 

 

Property3: The auto o elatio  fu tio  R τ  a d e e g  spe t al de sit  Ψ(w) form a fourier transform pair. 

Mathematically, 

R τ               Ψ(w). 

 

1.8 Concept of Power Density 

A power signal is one which has finite average power and infinite energy. Hence x(t) is a power signal if  

0<P<∞ 

A d E=∞ 

Where P is the average power and E is the energy of the signal. 
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Almost all practical signals are power signals since their average power is finite and non-zero. For continuous 

time signal, the average power P is defined as  

P    =             𝐿  𝑇 ∫𝑇−𝑇 dt 

 

The Power Spectral Density 

The expression for power spectral density may be derived by assuming the power signal a limiting case of an 

energy signal, such that it is zero outside the interval ± 𝜏
 . Let this terminated signal be denoted as 𝜏(t) may 

be expressed as  

 𝜏(t)={   | | < 𝜏ℎ } 

Now since terminated signal 𝜏 t  is of fi ite du atio  τ, The efo e it is a  e e g  sig al. Let the e e g  of this 
signal be denoted by 𝜏 and may be expressed as 𝜏=∫ | 𝜏 |∞−∞ dt=∫ | 𝜏 |∞−∞ df 

Here, 𝜏(w) is th  fourier transform of 𝜏(t). It may be observed that x(t) over the interval (− 𝜏
, 𝜏) will be same 

as 𝜏(t) over the interval (-∞, ∞). 

Therefore, we have  ∫ | 𝜏 |∞−∞ dt=∫ | |𝜏−𝜏 dt 

Therefore, 

𝜏 ∫ | |𝜏−𝜏 dt =𝜏 ∫ | 𝜏 |∞−∞ df 

Taki g τ→∞ of oth sides of the e uatio  

 

 

                          𝜏 ∫ | |𝜏−𝜏 dt     =                       𝜏 ∫ | 𝜏 |∞−∞ df 

 

The left Hand side of the above equation represents the average power P of the function x(t). Therefore  

 

                             P=  ∫ lim𝜏→ | 𝜏 |𝜏∞−∞ df  ------(1) 

In the limit 𝜏 → , the ratio 
| 𝜏 |𝜏  may be approach a finite value. 

Let this finite value be S(w).  

So that  S(w)= lim𝜏→ | 𝜏 |𝜏   --------(2) 

From equation (1) and (2) 

P=∫ lim𝜏→ 𝑆∞−∞ df  = 𝜋 ∫ lim𝜏→ 𝑆∞−∞ dw 

According to the above equation, the total power of the signal is obtained by multiplying S(w) with bandwidth Δ (dw) and integrating over the bandwidth. Hence, S(w) may be treated as average power per unit 

bandwidth and so is called as power spectral density Or power density spectrum. 

Since | 𝜏 | = | 𝜏 − |  

T→∞ 

Lim 

τ→∞ 

Lim 

τ→∞ 
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Therefore, the power contribution by positive and negative frequencies is identical. Thus, average power is 

expressed as  

P=∫ 𝑆∞−∞ df =∫ 𝑆∞
df=𝜋 ∫ 𝑆∞

 

 

Properties of power spectral density function  

Property1: The area under power density function is equal to the average power of that signal. 

P=∫ 𝑆∞−∞ df 

Property2: If x(t) is input to a linear time invariant (LTI) system with transfer function H(jw) , then input and 

output power spectral density function are related as   𝑆o(w)= |𝐻 | Si(w) 

Where, 𝑆o(w)= output power spectral density 𝑆i(w)= input power spectral density   |𝐻 | = power gain at frequency w. 

 

Property3: The autocorrelation functio  R τ  and power spectral density 𝑆(w) form a fourier transform pair. 

Mathematically, 

R τ               𝑆(w). 
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