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Unit-1 Notes 
 

Algorithm 

1.1 Introduction 

   Definition 

͞Algorithmic is the backend concept of the program or it is just like the recipe of the program.͟ 

 

   Understanding of Algorithm 

   An algorithm is a sequence of unambiguous instruction for solving a problem, for obtaining a required 

output for any legitimate input in a finite amount of time. 

               Problem 

 
       Algorithm 

 

  

Input “C     “Computer” Output 
  

   

Fig 1.1 

In addition every algorithm must satisfy the following criteria: 

Input: there are zero or more quantities, which are externally supplied;  

Output: at least one quantity is produced; 

Definiteness: each instruction must be clear and unambiguous; 

Finiteness: if we trace out the instructions of an algorithm, then for all cases the algorithm will 

terminate after a finite number of steps; 

Effectiveness:  every  instruction  must  be  sufficiently  basic  that  it  can  in principle be carried out 

by a person using only pencil and paper. It is not enough that each operation be definite, but it must 

also be feasible. 

In formal computer science, algorithm and program distinguishes as:- 

 Algorithm is a backend concept of program. 

 A program does not necessarily satisfy the fourth condition.  

 One important example of such a program for a computer is its operating system, which never 

terminates (except for system crashes) but continues in a wait loop until more jobs are 

entered. 

 We represent algorithm using a pseudo language that is a combination of the constructs of a 

programming language together with informal English statements. 

 

Example: 

PUZZLE(x)  
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while x != ϭ  
    if x is even  
     then  x = x / Ϯ  
     else x = ϯx + ϭ 

Input:  x=2 

Output: 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 

1.2 Fundamentals of the Analysis of Algorithm 

 How to express an Algorithm? 

 English 

 Pseudo Code 

 Algorithm Design Goals 

The two basic design goals that one should strive for in a program are: 

1. Try to save Time 

2. Try to save Space 

 Performance of a program: 

The performance of a program is the amount of computer memory and time needed to run a 

program. We use two approaches to determine the performance of a program. One is analytical, and 

the other experimental. In performance analysis we use analytical methods, while in performance 

measurement we conduct experiments. 

1.2.1 Analysis Frame work 

Importance of Analyze Algorithm 

 Need to recognize limitations of various algorithms for solving a problem. 

 Need to understand relationship between problem size and running time. 

 When is a running program not good enough? 

 Need to learn how to analyze an algorithm's running time without coding it. 

 Need to learn techniques for writing more efficient code. 

 Need to recognize bottlenecks in code as well as which parts of code are easiest to optimize. 

Why do we analyze about them? 

 Understand their behavior, and (Job -- Selection, performance, modify) 
 Improve them. (Research)  

What do we analyze about them? 

 Correctness 

 Does the input/output relation match algorithm requirement? 

 Amount of work done  
 Basic operations to do task  

 Amount of space used 

 Memory used  
 Simplicity, clarity 

 Verification and implementation.  
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 Optimality 

 Is it impossible to do better? 

   There are two kinds of efficiency 

Time efficiency - ͞indicates how fast an algorithm in question runs.͟ 

Space efficiency - ͞deals with the extra space the algorithm requires.͟ 

   Complexity:- 

         ͞The complexity of an algorithm is simply the amount of work the algorithm performs to 

complete its task. “ 

Time Complexity: 

The time needed by an algorithm expressed as a function of the size of a problem is called the time 

complexity of the algorithm. The time complexity of a program is the amount of computer time it 

needs to run to completion. 

The limiting behavior of the complexity as size increases is called the asymptotic time complexity. It is 

the asymptotic complexity of an algorithm, which ultimately determines the size of problems that can 

be solved by the algorithm. 

Space Complexity: 

The space complexity of a program is the amount of memory it needs to run to completion. The space 

need by a program has the following components: 

1. Instruction space: Instruction space is the space needed to store the compiled version of the 

program instructions. 

2. Data space: Data space is the space needed to store all constant and variable values.  

Data space has two components: 

 Space needed by constants and simple variables in program. 

 Space needed by dynamically allocated objects such as arrays and class instances. 

   Note: But there are some other factors more important than performance: 

 Modularity 

 Correctness 

 Maintainability 

 Functionality 

 Robustness 

 User-friendliness 

 Programmer time 

 Simplicity 

 Extensibility 

 Reliability 

   Note: Why study algorithms and performance? 

 Algorithms help us to understand scalability. 

 Performance often draws the line between what is feasible and what is impossible. 

 Algorithmic mathematics provides a language for talking about program behavior. 
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 Performance is the currency of computing. 

 The lessons of program performance generalize to other computing resources.  

 

1.3 Algorithm Designing Approaches 

Most popular algorithm designing approaches: 

Standard methods (for easy problems) 

1. Incremental Approach 

2. Divide-and-conquer 

3. Greedy Strategy 

4. Dynamic programming 

5. Search 

Advanced methods (for hard problems) 

6. Probabilistic/randomized algorithms 

7. Approximation algorithms 

1.4 Classification of various Algorithms running time:  

If ͚Ŷ͛ is the Ŷuŵďeƌ of data items to be processed or degree of polynomial or the size of the file to be 

sorted or searched or the number of nodes in a graph etc. 

Next instructions of most programs are executed once or at most   only a few times. If all the 

instructions of a program have this property, we say that its running time is a constant. 

1. log n: When the running time of   a   program   is logarithmic, the program   gets slightly slower 

as n grows.  This running time commonly occurs in programs that solve a big problem by transforming 

it into a smaller problem, cutting the size by some constant fraction. 

2. n :When the running time of a program is linear, it is generally the case that a small amount of 

processing is done on each input element. This is the optimal situation for an algorithm that must 

process n inputs. 

3. nlog n: This running time arises for algorithms that solve a problem by breaking it up into smaller 

sub-problems, solving then independently, and then combining the solutions. When n doubles, the 

running time more than doubles. 

4. n
2
:  When the running time of an algorithm is quadratic, it is practical  for use only on relatively 

small problems. Quadratic running times typically arise in algorithms that process all pairs of data 

items (perhaps in a double nested loop). 

5. n3:   Similarly, an algorithm that process triples of data items (perhaps in a triple–nested loop) 

has a cubic running time and is practical for use only on small problems. 

1.5 Complexity of Algorithms 

The complexity of an algorithm M is the function f(n) which gives the running time and/or storage 

spaĐe ƌeƋuiƌeŵeŶt of the algoƌithŵ iŶ teƌŵs of the size ͚Ŷ͛ of the iŶput data. MostlǇ, the stoƌage 
spaĐe ƌeƋuiƌed ďǇ aŶ algoƌithŵ is siŵplǇ a ŵultiple of the data size ͚Ŷ͛. CoŵpleǆitǇ shall ƌefeƌ to the 
running time of the algorithm. 
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The fuŶĐtioŶ f;ŶͿ, giǀes the ƌuŶŶiŶg tiŵe of aŶ algoƌithŵ, depeŶds Ŷot oŶlǇ oŶ the size ͚Ŷ͛ of the iŶput 
data but also on the particular data. The complexity function f(n) for certain cases are: 

1. Best  Case :  The minimum possible value of f(n) is called the best case. 

2. Average  Case :  The expected value of f(n). 

3. Worst  Case :  The maximum value of f(n) for any key possible input. 

2. Asymptotic Notations (Rate of Growth): 

The following notations are commonly use notations in performance analysis and used to characterize 

2.1 The complexity of an algorithm: 

1. Big–OH (O) 

2. Big–OMEGA ;ΩͿ 
3. Big–THETA ;ӨͿ 

1. Big–OH O (Upper Bound) 

O(g(n)) = { f(n) : there exist positive constants c and n0 suĐh that Ϭ ч f;ŶͿ ч Đg;ŶͿ foƌ all Ŷ ш n0 }. 

It is the upper bound of any function. Hence it denotes the worse case complexity of any algorithm. 

We can represent it graphically 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.2 

Example: 

f(n) = 3n + 2 

General form is f(n) ≤ cg(n) 
When n ≥ 2,   3n + 2 ≤ 3n + n = 4n 

Hence f(n) = O(n) 

here c = 4 and n0 = 2 

When n ≥ 1,   3n + 2 ≤ 3n + 2n = 5n 

Hence f(n) = O(n), here c = 5 and n0 = 1 

Hence we can have different c,n0 pairs satisfying for a given function. 

2. Big–OMEGA Ω (Lower Bound) 

Ω ;g;ŶͿͿ = ΂ f;ŶͿ : theƌe eǆist positiǀe ĐoŶstaŶts Đ aŶd Ŷ0 suĐh that Ϭ ч Đg;ŶͿ ч f;ŶͿ foƌ all Ŷ ш Ŷ0 }  
It is the lower bound of any function. Hence it denotes the best case complexity of any algorithm. 

We can represent it graphically as 

C.g(n) 

F(n) 

n0 

f(n) 
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Fig 1.3 

 
Example: 

 f(n) = 3n + 2 

3n + 2 > 3n for all n.  HeŶĐe f;ŶͿ = Ω;ŶͿ 
3. Big–THETA Ө (Same order) 

Θ;g;ŶͿͿ = ΂f;ŶͿ : theƌe eǆist positiǀe constants c1,c2 and n0 such that c1g;ŶͿ чf;ŶͿ чĐ2g(n) for 

all Ŷ ш Ŷ0 } 

If f;ŶͿ = Θ;g;ŶͿͿ, all ǀalues of Ŷ ƌight to Ŷ0 f(n) lies on or above c1g(n) and on or below c2g(n). Hence 

it is asymptotic tight bound for f(n). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.4 

Example: 

f(n) = 3n + 2 

f;ŶͿ =  Θ;ŶͿ ďeĐause f;ŶͿ = O;ŶͿ , Ŷ ш Ϯ. 

2.2 Growth of Function: 

Suppose ͚M͛ is aŶ algoƌithŵ, aŶd suppose ͚Ŷ͛ is the size of the iŶput data. CleaƌlǇ the ĐoŵpleǆitǇ f;n) of 

M increases as n increases. It is usually the rate of increase of f(n) we want to examine. This is usually 

done by comparing f(n) with some standard functions. The most common computing times are: 

O(1), O(log n), O(n), O(nlogn), O(n
2
), O(n

3
), O(2

n
), n! and n

n
. 

The execution time for six of the typical functions is given below: 

C.g(n) 

F(n) 

n0 

f(n) 

C2.g(n) 

F(n) C1.g(n) 

f(n) 

n0 
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N logn n*logn n
2
 n

3
 2

n
 

1 0 0 1 1 2 

2 1 2 4 8 4 

4 2 8 16 64 16 

8 3 24 64 512 256 

16 4 64 256 4096 65,536 

32 5 160 1024 32,768 4,294,967,296 

64 6 384 4096 2,62,144 Note 1 

128 7 896 16,384 2,097,152 Note 2 

256 8 2048 65,536 1,677,216 ???????? 

 

Note1: The value here is approximately the number of machine instructions executed by a 1 gigaflop 

computer in 5000 years. 

Note 2: The value here is about 500 billion times the age of the universe in nanoseconds, assuming a 

universe age of 20 billion years. 

 

3. Heap Sort 

Heap sort is a comparison based sorting technique based on Binary Heap data structure. It is similar to 

selection sort where we first find the maximum element and place the maximum element at the end. 

We repeat the same process for remaining element. 

3.1  Binary Heap: 

 A complete binary tree is a binary tree in which every level, except possibly the last, is 

completely filled, and all nodes are as far left as possible. 

 A Binary Heap is a Complete Binary Tree where items are stored in a special order such that 

value in a parent node is greater (or smaller) than the values in its two children nodes. The 

former is called as max heap and the latter is called min heap. The heap can be represented by 

binary tree or array. 
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3.2 Heap Sort Algorithm for sorting in increasing order: 

1. Build a max heap from the input data. 

2. At this point, the largest item is stored at the root of the heap. Replace it with the last item of the 

heap followed by reducing the size of heap by 1. Finally, heapify the root of tree. 

3. Repeat above steps while size of heap is greater than 1. 

3.3 Representation of Binary Heaps: 

• An array A that represents a heap is an object with two attributes:  

• length[A], which is the number of elements in the array 

• heap-size[A], the number of elements in the heap stored within array A.  

 

 

 

 

 

 

 

3.4 Properties of Binary Heaps 

• If a heap contains n elements, its height is lg2 n. 

• In a max-heaps 

 For every non-root node i, A[PARENT(iͿ΁ ш A[i] 

• In a min-heaps 

 For every non-root node i, A[PARENT(iͿ΁ ч A[i] 

Example: 

Max Heap 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

length heap-size 

3 

15 

6 

9 

12 

5 

8 

2 1 

4 6 
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Min Heap: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heapify: 

Build Max Heap: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complexity of Heap Sort :  

Worst Case Time Complexity : O(n log n) 

Best Case Time Complexity : O(n log n) 

Average Time Complexity : O(n log n) 
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Space Complexity : O(1) 

Introduction to Divide and Conquer Technique 

4. Binary Search:  

The Binary search technique is a search technique which is based on Divide & Conquer strategy. The 

entered array must be sorted for the searching, then we calculate the location of mid element by using 

formula mid= (Beg + End)/2, here Beg and End represent the initial and last position of array. In this 

technique we compare the Key element to mid element. So there May be three cases:- 

1. If array[mid] = = Key (Element found and Location is Mid) 

2. If array[mid] > Key ,Then set End = mid-1.(continue the process) 

3. If array [mid] < Key, Then set Beg=Mid+1.  (Continue the process) 

4.1 Binary Search Algorithm 

1.  [Initialize segment variable] set beg=LB,End=UB and Mid=int(beg+end)/2. 

2. Repeat step 3 and 4 while beg<=end and Data[mid] != item. 

3. If item< data[mid] then set end=mid-1 

           Else if Item>data[mid] then set beg=mid+1[end of if structure] 

4. Set mid= int(beg+end)/2.[End of step 2 loop] 

5. If data[mid]=item then set Loc= Mid. 

          Else set loc=null[end of if structure] 

6. Exit. 

4.2 Time complexity: 

As we dispose of one part of the search case during every step of binary search, and perform the 

search operation on the other half, this results in a worst case time complexity of O (log2N). 

5. Merge Sort 

The merge () function is used for merging two halves. The merge (arr, l, m, r) is key process that 

assumes that arr[l..m] and arr[m+1..r] are sorted and merges the two sorted sub-arrays into one.  

5.1 Merge Sort Algorithm 

procedure mergesort ( var a as array ) 

   if ( n == 1 ) return a 

   var l1 as array = a[0] ... a[n/2] 

   var l2 as array = a[n/2+1] ... a[n] 

   l1 = mergesort( l1 ) 

   l2 = mergesort( l2 ) 

   return merge( l1, l2 ) 

end procedure 

procedure merge( var a as array, var b as array ) 

   var c as array 

   while ( a and b have elements ) 
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      if ( a[0] > b[0] ) 

         add b[0] to the end of c 

         remove b[0] from b 

      else 

         add a[0] to the end of c 

         remove a[0] from a 

      end if 

   end while 

    while ( a has elements ) 

      add a[0] to the end of c 

      remove a[0] from a 

   end while 

   while ( b has elements ) 

      add b[0] to the end of c 

      remove b[0] from b 

   end while 

    return c 

end procedure 

 

5.2 Time Complexity:  

Merge Sort is a recursive algorithm and time complexity can be expressed as following recurrence 

relation. 

T;ŶͿ = ϮT;Ŷ/ϮͿ + Ө;ŶͿ 
The above recurrence can be solved either using Recurrence Tree method or Master method. It falls in 

Đase II of Masteƌ Method aŶd solutioŶ of the ƌeĐuƌƌeŶĐe is Ө;ŶLogn). 

Tiŵe ĐoŵpleǆitǇ of Meƌge Soƌt is Ө;ŶLogŶͿ iŶ all ϯ Đases ;ǁoƌst, aǀeƌage aŶd ďestͿ as ŵeƌge soƌt 
always divides the array in two halves and take linear time to merge two halves. 

Auxiliary Space: O(n) 

Algorithmic Paradigm: Divide and Conquer 

Sorting In Place: No in a typical implementation 

6. Quick Sort: 

Like Merge Sort, QuickSort is a Divide and Conquer algorithm. It picks an element as pivot and 

partitions the given array around the picked pivot. There are many different versions of quickSort that 

pick pivot in different ways. 

 Always pick first element as pivot. 

 Always pick last element as pivot (implemented below) 

 Pick a random element as pivot. 

 Pick median as pivot. 

The key process in quickSort is partition(). Target of partitions is, given an array and an element x of 

array as pivot, put x at its correct position in sorted array and put all smaller elements (smaller than x) 

before x, and put all greater elements (greater than x) after x. All this should be done in linear time. 
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/* low  --> Starting index,  high  --> Ending index */ 

 

6.1 Quick Sort Algorithm: 

quickSort(arr[], low, high) 

{ 

    if (low < high) 

    { 

        /* pi is partitioning index, arr[p] is now at right place */ 

        pi = partition(arr, low, high); 

        quickSort(arr, low, pi - 1);  // Before pi 

        quickSort(arr, pi + 1, high); // After pi 

    } 

} 

/* This function takes last element as pivot, places  the pivot element at its correct position in sorted 

    array, and places all smaller (smaller than pivot) to left of pivot and all greater elements to right 

   of pivot */ 

partition (arr[], low, high) 

{ 

    // pivot (Element to be placed at right position) 

    pivot = arr[high];   

     i = (low - 1)  // Index of smaller element 

    for (j = low; j <= high- 1; j++) 

    { 

        // If current element is smaller than or equal to pivot 

        if (arr[j] <= pivot) 

        { 

            i++;    // increment index of smaller element 

            swap arr[i] and arr[j] 

        } 

    } 

    swap arr[i + 1] and arr[high]) 

    return (i + 1) 

} 

 

6.2 Analysis of Quick Sort 

Time taken by Quick Sort in general can be written as following. 

T(n) = T(k) + T(n-k-ϭͿ + Ө ;ŶͿ 
The first two terms are for two recursive calls, the last term is for the partition process. k is the 

number of elements which are smaller than pivot. 

The time taken by Quick Sort depends upon the input array and partition strategy. Following are three 

cases. 
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Worst Case: The worst case occurs when the partition process always picks greatest or smallest 

element as pivot. If we consider above partition strategy where last element is always picked as pivot, 

the worst case would occur when the array is already sorted in increasing or decreasing order. 

Following is recurrence for worst case. 

 T(n) = T(0) + T(n-ϭͿ + Ө ;ŶͿ,  which is equivalent to   

 T(n) = T(n-ϭͿ + Ө ;ŶͿ 
The solutioŶ of aďoǀe ƌeĐuƌƌeŶĐe is Ө ;Ŷ2

). 

Best Case:  

The best case occurs when the partition process always picks the middle element as pivot. Following is 

recurrence for best case. 

T (n) = 2T (Ŷ/ϮͿ + Ө ;ŶͿ 
The solutioŶ of aďoǀe ƌeĐuƌƌeŶĐe is Ө ;ŶLogŶͿ. It ĐaŶ ďe solǀed usiŶg Đase Ϯ of Masteƌ Theoƌeŵ. 
Average Case: 

To do average case analysis, we need to consider all possible permutation of array and calculate time 

takeŶ ďǇ eǀeƌǇ peƌŵutatioŶ ǁhiĐh doesŶ͛t look easy. 

We can get an idea of average case by considering the case when partition puts O (n/9) elements in 

one set and O(9n/10) elements in other set. Following is recurrence for this case. 

 T;ŶͿ = T;Ŷ/9Ϳ + T;9Ŷ/ϭϬͿ + Ө ;ŶͿ 
Solution of above recurrence is also O (nlogn) 

Although the worst case time complexity of Quick Sort is O(n
2
) which is more than many other sorting 

algorithms like Merge Sort and Heap Sort, Quick Sort is faster in practice, because its inner loop can 

be efficiently implemented on most architectures, and in most real-world data. Quick Sort can be 

implemented in different ways by changing the choice of pivot, so that the worst case rarely occurs 

for a given type of data. However, merge sort is generally considered better when data is huge and 

stored in external storage. 

7. StrasseŶ’s ŵatrix MultiplicatioŶ:  

Suppose we want to multiply two matrices of size N x N: for example A x B = C. 

 
C

11
 = a

11
b

11
 + a

12
b

21
 

C
12

 = a
11

b
12

 + a
12

b
22

 

C
21

 = a
21

b
11

 + a
22

b
21

 

C
22

 = a
21

b
12

 + a
22

b
22

 

This type of matrix multiplication done by the conventional Divide & Conquer Technique, here the 

input matrix is divided into N/2 X N/2 matrix, so if N =2 then the size of each sub problem will be 1 X 

1,then there are total 8 sub problems. 

Hence in summarized, 2x2 matrix multiplication can be accomplished in  8 multiplication. 

  

Page no: 13



Department of Computer Science & Engineering 

 

Analysis & Design of Algorithm (CS-4004) Page 14 

 

Mathmatically: (2
log

2
8
 =2

3
) 

 

7.1 General Algorithm of Conventional Matrix Multiplication Technique: 

void matrix_mult () 

{ 

  for (i = 1; i <= N; i++) 

 {                                                                   

        for (j = 1; j <= N; j++)  

{                    

compute Ci,j;               

} 

  } 

} 

Time Analysis: 

 

 

 

 

Strassen showed that 2x2 matrix multiplication can be accomplished in  7 multiplication and 18 

additions or subtractions.  

(2
log

2
7
 =2

2.807
) 

 This reduce can be done by Divide and Conquer Approach. 

7.2 StrasseŶs’s Matrix MultiplicatioŶ:  

P1 = (A11+ A22)(B11+B22)  

P2 = (A21 + A22) * B11  

P3 = A11 * (B12 - B22)  

P4 = A22 * (B21 - B11)  

P5 = (A11 + A12) * B22  

P6 = (A21 - A11) * (B11 + B12)  

P7 = (A12 - A22) * (B21 + B22) 

C11 = P1 + P4 - P5 + P7 

C12 = P3 + P5  

C21 = P2 + P4  

C22 = P1 + P3 - P2 + P6 

Here are no of multiplication is 7 so- 

CoŵpleǆitǇ = T;ŶͿ = Ө ;Ŷlog
2

(7)Ϳ = Ө ;Ŷ2.8
) 
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